Home
Class 12
MATHS
tan^-1a+tan^-1b=pi/4 . Find the value of...

`tan^-1a+tan^-1b=pi/4 .` Find the value of `a+b-(a^2+b^2)/2+(a^3+b^3)/3-(a^4+b^4)/5+ . . . `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \tan^{-1} a + \tan^{-1} b = \frac{\pi}{4} \] Using the identity for the sum of inverse tangents, we have: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] Setting this equal to \(\frac{\pi}{4}\), we can take the tangent of both sides: \[ \frac{a + b}{1 - ab} = 1 \] Cross-multiplying gives: \[ a + b = 1 - ab \] Rearranging this equation, we find: \[ a + b + ab = 1 \] Next, we need to find the value of the series: \[ S = a + b - \frac{a^2 + b^2}{2} + \frac{a^3 + b^3}{3} - \frac{a^4 + b^4}{5} + \ldots \] We can express \(a^2 + b^2\) and \(a^3 + b^3\) in terms of \(a + b\) and \(ab\): 1. **Finding \(a^2 + b^2\)**: \[ a^2 + b^2 = (a + b)^2 - 2ab = (1 - ab)^2 - 2ab = 1 - 2ab + a^2b^2 - 2ab = 1 - 4ab + a^2b^2 \] 2. **Finding \(a^3 + b^3\)**: \[ a^3 + b^3 = (a + b)(a^2 + b^2 - ab) = (1 - ab)(1 - 4ab + a^2b^2 - ab) \] 3. **Finding \(a^4 + b^4\)**: \[ a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2 \] Now, we can rewrite the series \(S\) using these identities. The series can be recognized as the Taylor series expansion for \(\ln(1+x)\): \[ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] Thus, we can express \(S\) as: \[ S = \ln(1+a) + \ln(1+b) = \ln((1+a)(1+b)) \] Using the relationship \(a + b + ab = 1\), we can write: \[ (1 + a)(1 + b) = 1 + (a + b) + ab = 1 + 1 = 2 \] Therefore, we have: \[ S = \ln(2) \] ### Final Answer: \[ \boxed{\ln(2)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt a,b lt 1 and tan^(-1)a+tan^(-1) b = pi/4 , then the value of (a+b)-((a^2+b^2)/2)+((a^3+b^3)/3)-((a^4+b^4)/4)+... is :

Find the value of the products: (4a^(2)+3b)(4a^(2)+3b)ata=1,b=2

If y=tan^(-1)(1)/(2)+tan^(-1)b,(0 =(pi)/(4) then the maximum value of b is (1)/(2)(b)-1 (c) (2)/(3)(d)

tan(A+B)=(1)/(2),tan(A-B)=(1)/(3), then find the value of tan2A

If A+B=pi/4 , find the numerical value of (1+tan A)(1+tan B) is equal to

If tan(A+2B)=1/2 and tan2(A-B)=1/3 then find the value of /_A

If tan A= 1/2 and tan B= 1/3 , then the value of A+B is

If tan(A+B)=(1)/(2),tan(A-B)=(1)/(3) , then find the value of tan2A .

The value of [tan{pi/4+1/2sin^(-1)(a/b)}]^(-1)

Simplify and find the value of the following expression when a=3 and b=1: 4(a^2+b^2+2a b)-[4(a^2+b^2-2a b)-{-b^3+4(a-3)}]