Home
Class 12
MATHS
Pn=alpha^n+beta^n , alpha +beta=1 , alph...

`P_n=alpha^n+beta^n , alpha +beta=1 , alpha*beta=-1 , P_(n-1)=11 ,P_(n+1)=29 , then P_(n)^2=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given the following information: 1. \( P_n = \alpha^n + \beta^n \) 2. \( \alpha + \beta = 1 \) 3. \( \alpha \beta = -1 \) 4. \( P_{n-1} = 11 \) 5. \( P_{n+1} = 29 \) We need to find \( P_n^2 \). ### Step-by-Step Solution: **Step 1: Establish the recurrence relation for \( P_n \)** Using the properties of roots, we can derive a recurrence relation for \( P_n \): \[ P_n = (\alpha + \beta) P_{n-1} - \alpha \beta P_{n-2} \] Substituting the known values: \[ P_n = 1 \cdot P_{n-1} - (-1) \cdot P_{n-2} \] This simplifies to: \[ P_n = P_{n-1} + P_{n-2} \] **Step 2: Use the given values to find \( P_{n-2} \)** We know: \[ P_{n-1} = 11 \quad \text{and} \quad P_{n+1} = 29 \] Using the recurrence relation: \[ P_{n+1} = P_n + P_n - P_{n-1} \] So, \[ 29 = P_n + 11 \] This gives us: \[ P_n = 29 - 11 = 18 \] **Step 3: Calculate \( P_n^2 \)** Now that we have \( P_n = 18 \), we can find \( P_n^2 \): \[ P_n^2 = 18^2 = 324 \] ### Final Answer: \[ P_n^2 = 324 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

| alpha alpha1 beta F|=(alpha-P)(beta-alpha)

Let alpha and beta be two real numbers such that alpha+beta=1 and alpha beta=-1 Let p_(n)=(alpha)^(n)+(beta)^(n), p_(n-1)=11 and p_(n+1)=29 for some integer n geq 1 Then, the value of p_(n)^(2) is

Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n) , Show that V_(n+1) = pV_(n) -qV_(n-1) find V_(5)

If l,m,n, be the three positive roots of the equation x^(3)-ax^(2)+bx-48=0 , then the minimum value of (1)/(l)+(2)/(m)+(3)/(n) equals (alpha)/(beta) where alpha,beta in N , gcd(alpha,beta)=1 then alpha^(2)+beta^(2)=

if a_(n=(alpha^(n)-beta^(n))/(alpha-beta) where alpha and beta are roots of equation x^(2)-x-1=0 and b_(n)=a_(n+1)+a_(n-1) then

If tan(alpha+beta)=n tan(alpha-beta) then show that (n+1)sin2 beta=(n-1)sin2 alpha