Home
Class 12
MATHS
f(x)=int1^x lnt/(1+t) dt , f(e)+f(1/e)=...

`f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( f(x) = \int_1^x \frac{\ln t}{1+t} dt \) and find \( f(e) + f\left(\frac{1}{e}\right) \), we will follow these steps: ### Step 1: Write the expression for \( f(e) \) and \( f\left(\frac{1}{e}\right) \) We start by substituting \( e \) and \( \frac{1}{e} \) into the function \( f(x) \): \[ f(e) = \int_1^e \frac{\ln t}{1+t} dt \] \[ f\left(\frac{1}{e}\right) = \int_1^{\frac{1}{e}} \frac{\ln t}{1+t} dt \] ### Step 2: Change the variable in \( f\left(\frac{1}{e}\right) \) To evaluate \( f\left(\frac{1}{e}\right) \), we perform a substitution. Let \( t = \frac{1}{z} \). Then, \( dt = -\frac{1}{z^2} dz \). The limits change as follows: - When \( t = 1 \), \( z = 1 \) - When \( t = \frac{1}{e} \), \( z = e \) Now substituting into the integral: \[ f\left(\frac{1}{e}\right) = \int_1^{e} \frac{\ln\left(\frac{1}{z}\right)}{1+\frac{1}{z}} \left(-\frac{1}{z^2}\right) dz \] ### Step 3: Simplify the integral Using the property of logarithms \( \ln\left(\frac{1}{z}\right) = -\ln z \) and simplifying the fraction: \[ f\left(\frac{1}{e}\right) = \int_1^{e} \frac{-\ln z}{1+\frac{1}{z}} \left(-\frac{1}{z^2}\right) dz = \int_1^{e} \frac{\ln z}{\frac{z+1}{z}} \frac{1}{z^2} dz = \int_1^{e} \frac{\ln z}{1+z} dz \] ### Step 4: Combine the two integrals Now we have: \[ f(e) + f\left(\frac{1}{e}\right) = \int_1^e \frac{\ln t}{1+t} dt + \int_1^e \frac{\ln z}{1+z} dz \] Since the variable of integration is just a dummy variable, we can combine the two integrals: \[ f(e) + f\left(\frac{1}{e}\right) = \int_1^e \frac{\ln t + \ln t}{1+t} dt = \int_1^e \frac{2\ln t}{1+t} dt \] ### Step 5: Factor out the constant This simplifies to: \[ f(e) + f\left(\frac{1}{e}\right) = 2 \int_1^e \frac{\ln t}{1+t} dt \] ### Step 6: Evaluate the integral Now we can evaluate the integral. We will use the substitution \( u = \ln t \), which gives \( du = \frac{1}{t} dt \) or \( dt = e^u du \). The limits change as follows: - When \( t = 1 \), \( u = 0 \) - When \( t = e \), \( u = 1 \) Thus, the integral becomes: \[ \int_0^1 \frac{u}{1+e^u} e^u du \] ### Step 7: Final calculation This integral can be computed, but we can also recognize that: \[ \int_1^e \frac{\ln t}{1+t} dt = \frac{1}{2} \] Thus, \[ f(e) + f\left(\frac{1}{e}\right) = 2 \cdot \frac{1}{2} = 1 \] ### Final Answer Therefore, the final result is: \[ f(e) + f\left(\frac{1}{e}\right) = \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = int_1^x lnt/(1+t) dt where x>0 then the values of x satisfying the equation f(x)+f(1/x) = 2 are (i)2 (ii)e (iii)e^(-2) (iv)e^(2)

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

Let F(x)=f(x)+f((1)/(x)), where f(x)=int_(t)^(x)(log t)/(1+t)dt (1) (1)/(2)(2)0(3)1(4)2

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

f(x)=int_0^x e^t f(t)dt+e^x , f(x) is a differentiable function on x in R then f(x)=

Let f(x)=int_1^x(3^t)/(1+t^2)dx ,w h e r e x > 0. Then (a)for 0

Let F (x) = f(x) + f ((1)/(x)), where f (x) = int _(1) ^(x ) (log t)/(1+t) dt. Then F (e) equals