Home
Class 12
MATHS
Let hati+yhatj+zhatk and xhati-hatj+hatk...

Let `hati+yhatj+zhatk` and `xhati-hatj+hatk` are parallel then unit vector parallel to `xhati+yhatj+zhatk`

A

`i/sqrt2(hati-hatj)`

B

`i/sqrt2(hati+hatj)`

C

`i/sqrt3(hati-hatj+hatk)`

D

`i/sqrt3(hati+hatj+hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine a unit vector that is parallel to the vector \( \mathbf{x} \hat{i} + \mathbf{y} \hat{j} + \mathbf{z} \hat{k} \) given that the vectors \( \mathbf{a_1} = \mathbf{x} \hat{i} - \hat{j} + \hat{k} \) and \( \mathbf{a_2} = \hat{i} + \mathbf{y} \hat{j} + \mathbf{z} \hat{k} \) are parallel (collinear). ### Step-by-Step Solution: 1. **Identify the Vectors**: - Let \( \mathbf{a_1} = \mathbf{x} \hat{i} - \hat{j} + \hat{k} \) - Let \( \mathbf{a_2} = \hat{i} + \mathbf{y} \hat{j} + \mathbf{z} \hat{k} \) 2. **Set Up the Condition for Collinearity**: - For two vectors to be collinear, the ratios of their corresponding components must be equal. Thus, we can write: \[ \frac{x}{1} = \frac{-1}{y} = \frac{1}{z} = \lambda \] - Here, \( \lambda \) is a scalar. 3. **Express \( x, y, z \) in terms of \( \lambda \)**: - From the equations, we can express \( x, y, z \) as: \[ x = \lambda \] \[ y = -\frac{1}{\lambda} \] \[ z = \frac{1}{\lambda} \] 4. **Form the Vector \( \mathbf{v} \)**: - Now, substitute \( x, y, z \) into the vector \( \mathbf{v} = x \hat{i} + y \hat{j} + z \hat{k} \): \[ \mathbf{v} = \lambda \hat{i} - \frac{1}{\lambda} \hat{j} + \frac{1}{\lambda} \hat{k} \] 5. **Calculate the Magnitude of \( \mathbf{v} \)**: - The magnitude \( |\mathbf{v}| \) is given by: \[ |\mathbf{v}| = \sqrt{\lambda^2 + \left(-\frac{1}{\lambda}\right)^2 + \left(\frac{1}{\lambda}\right)^2} \] \[ = \sqrt{\lambda^2 + \frac{1}{\lambda^2} + \frac{1}{\lambda^2}} = \sqrt{\lambda^2 + \frac{2}{\lambda^2}} \] 6. **Simplify the Magnitude**: - Combine the terms: \[ |\mathbf{v}| = \sqrt{\lambda^2 + \frac{2}{\lambda^2}} = \sqrt{\frac{\lambda^4 + 2}{\lambda^2}} = \frac{\sqrt{\lambda^4 + 2}}{\lambda} \] 7. **Find the Unit Vector**: - The unit vector \( \mathbf{u} \) parallel to \( \mathbf{v} \) is given by: \[ \mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\lambda \hat{i} - \frac{1}{\lambda} \hat{j} + \frac{1}{\lambda} \hat{k}}{\frac{\sqrt{\lambda^4 + 2}}{\lambda}} = \frac{\lambda^2 \hat{i} - \hat{j} + \hat{k}}{\sqrt{\lambda^4 + 2}} \] 8. **Choose \( \lambda = 1 \) for Simplicity**: - If we set \( \lambda = 1 \): \[ \mathbf{u} = \frac{1 \hat{i} - 1 \hat{j} + 1 \hat{k}}{\sqrt{1^4 + 2}} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \] ### Final Answer: The unit vector parallel to \( \mathbf{x} \hat{i} + \mathbf{y} \hat{j} + \mathbf{z} \hat{k} \) is: \[ \mathbf{u} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The sides of a parallelogram are 2 hati + 4 hatj -5 hatk and hati + 2 hatj + 3 hatk , then the unit vector parallel to one of the diagonals is

If vecA= 6hati- 6hatj+5hatk and vecB= hati+ 2hatj-hatk , then find a unit vector parallel to the resultant of vecaA & vecB .

Find a unit vector parallel to the vector -3hati+4hatj .

A vector coplanar with vectores hati + hatj and hatj + hatk and parallel to the vector 2 hati - 2 hatj - 4 hatk is

The sides of a parallelogram are 2hati +4hatj -5hatk and hati + 2hatj +3hatk . The unit vector parallel to one of the diagonals is

If veca = (hati - 2hatj -3hatk) and vecb = (2hati + 4hatj +9 hatk) then find a unit vector parallel to (veca + vecb) .

Two vectors P=2hati+bhatj+2hatk and Q=hati+hatj+hatk will be parallel if

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3cevc .

Shown that the vectors 3 hati+3 hatj+9hatk and hati+hatj+3hatk are parallel.