Home
Class 12
MATHS
If f(x) is a continuous function such th...

If `f(x)` is a continuous function such that `f(x)={(2Sin(-(pi)/2x),,x lt -1),(abs(ax^2+x+b),,-1lexle1),(Sinpix , , xgt1):}` . Find a+b

A

-3

B

3

C

-1

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at the points where the definition of the function changes, specifically at \( x = -1 \) and \( x = 1 \). ### Step 1: Check Continuity at \( x = -1 \) We need to check the left-hand limit and the right-hand limit at \( x = -1 \). 1. **Left-hand limit as \( x \to -1^- \)**: \[ f(x) = 2 \sin\left(-\frac{\pi}{2} x\right) \] Substituting \( x = -1 \): \[ f(-1) = 2 \sin\left(-\frac{\pi}{2} \cdot (-1)\right) = 2 \sin\left(\frac{\pi}{2}\right) = 2 \cdot 1 = 2 \] 2. **Right-hand limit as \( x \to -1^+ \)**: \[ f(x) = |ax^2 + x + b| \] Substituting \( x = -1 \): \[ f(-1) = |a(-1)^2 + (-1) + b| = |a - 1 + b| \] For continuity at \( x = -1 \): \[ \lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} f(x) \] Thus, \[ 2 = |a - 1 + b| \tag{1} \] ### Step 2: Check Continuity at \( x = 1 \) Next, we check the continuity at \( x = 1 \). 1. **Left-hand limit as \( x \to 1^- \)**: \[ f(x) = |ax^2 + x + b| \] Substituting \( x = 1 \): \[ f(1) = |a(1)^2 + 1 + b| = |a + 1 + b| \] 2. **Right-hand limit as \( x \to 1^+ \)**: \[ f(x) = \sin(\pi x) \] Substituting \( x = 1 \): \[ f(1) = \sin(\pi \cdot 1) = \sin(\pi) = 0 \] For continuity at \( x = 1 \): \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \] Thus, \[ |a + 1 + b| = 0 \tag{2} \] ### Step 3: Solve the Equations From equation (2): \[ |a + 1 + b| = 0 \implies a + 1 + b = 0 \implies a + b = -1 \tag{3} \] From equation (1): \[ 2 = |a - 1 + b| \implies a - 1 + b = 2 \text{ or } a - 1 + b = -2 \] **Case 1**: \( a - 1 + b = 2 \) \[ a + b - 1 = 2 \implies a + b = 3 \tag{4} \] **Case 2**: \( a - 1 + b = -2 \) \[ a + b - 1 = -2 \implies a + b = -1 \tag{5} \] ### Step 4: Combine Results From equations (3) and (5), we see that both lead to the same result: \[ a + b = -1 \] ### Final Result Thus, the value of \( a + b \) is: \[ \boxed{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:RrarrR be defined as f(x)={{:(2sin(-(pix)/2)",",if xlt-1),(|ax^2+x+b|",",if -1lexle1),(sin(pix)",",if xgt1):} If f(x) is continuous on R , then a+b equals

If f(x)=[(x,xlt1),(x^(2),1lexle4),(8sqrt(x),xgt4):} the find f^(-1)(x) .

If f(x) is continuous in [-2, 2], where f(x)={:{(x+a", for " x lt 0),(x", for " 0 le x lt 1),(b-x", for " x ge 1):} , then a+b=

If f(x) is continuous in (-oo, 6) , where f(x)={: {(1+sin ((pi x)/(2))", for " - oo lt x le 1),(ax+b", for " 1 lt x lt 3),(6 tan ((pi x)/(12))", for " 3 le x lt 6):} , then

Discuss the continuity of the function f, where f is defined by : f(x)={{:(2x", if "xlt0),(0", if "0lexle1),(4x", if "xgt1):}

If f(x) and f'(x) are continuous at x=pi/6 , where f(x)={:{(sin 2x", if " x lt pi/6),(ax+b", if " x gt pi/6):} , then

For what choices of a, b, c, if any, does the function f(x)={{:(ax^(2)+bx+x" , "0lexle1),(bx-c" , "1lexle2),(x" , "xgt2):} become differentiable at x = 1 and x = 2?

If the function f(x)={{:((1+cospix)/(pi^(2)(x+1)^(2)),",",xlt-1),(ax+b,",",-1lexle1"is continuous" AA x "in R, then the value of 3a-bis-"),((x-1)/(lnsqrt(x)),",",xgt1):}