Home
Class 12
MATHS
int(0)^(1)(dx)/(e^(x)+e^(-x))=...

`int_(0)^(1)(dx)/(e^(x)+e^(-x))=`

Text Solution

Verified by Experts

The correct Answer is:
`tan^(-1) e - (pi)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1) (x-1) e^(-x) dx=

int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx=

int_(0)^(1)e^(x)(x^(x)+1)^(3)dx=

int(dx)/((e^(x)+e^(-x))^(2))=

int_(0)^(1)(1+e^(-x))dx=

int_(0)^(oo)[(2)/(e^(x))]dx=

int(1)/(e^(x)+e^(-x))dx

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for x in [0, a] . Then int_(0)^(a)(dx)/(1+e^(f(x))) is equal to

int (e^(x)+e^(-x))/((e^(x)-e^(-x)) log sin hx)dx=

int_(0)^(1) x e^(-x^(2))dx