Home
Class 12
MATHS
Show that int(0)^(n pi + alpha) |sin x|d...

Show that `int_(0)^(n pi + alpha) |sin x|dx = (2n+1) - cos alpha` where `n in N` and `0 le alpha le pi`

Text Solution

Verified by Experts

The correct Answer is:
`(2n+1) -cos alpha`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that int_(0)^(n pi+alpha) |sin x| dx = (2n+1)- cos alpha where n in N and 0 le alpha le pi

Show that int_(0)^(pi//2) sin^(n)xdx =int_(0)^(pi//2) cos^(n)x dx .

( sin(n+1) alpha - sin (n-1)alpha )/( cos (n+1) alpha + 2 cos n alpha + cos (n-1) alpha )=

Solve Sin 3 alpha = 4 Sin alpha Sin (x + alpha) Sin(x-alpha) where a ne n pi, n in z

The maximum value of ( cos alpha_1) ( cos alpha_2) … ( cos alpha_n) under the restrictions 0 le alpha_1, alpha_2 ....... alpha_n le (pi)/(2) and cot alpha_1. cot alpha_2 ……cot alpha_n = 1 is

cos(n+1) alpha * cos(n-1)alpha + sin (n+1)alpha * sin (n-1) alpha =

If 20 sin^(2) alpha+21 cos alpha-24=0 where (7pi)/(4) lt alpha lt 2pi then cot alpha//2=

A : The general solution for cos theta = 3//2 is theta = 2n pi pm Cos^(-1)(3//2) R : The general solution for cos theta = k is theta = 2n pi pm alpha, n in Z where 'alpha' is principal value, alpha in [0, pi] and |k|le 1