Home
Class 12
MATHS
Find Lt(n rarr oo) sum(r=0)^(n-1)(1)/(sq...

Find `Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

Lt_(n rarr oo)sum_(r=0)^(n-1)((r)/(n^(2) + r^(2)))

Lt_(ntooo)sum_(r=1)^(n-1)(1)/(sqrt(n^(2)-r^(2)))=

{:(" "Lt),(n rarr oo):}1/n sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

Lt_(ntooo)sum_(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=

Lt_(ntooo)sum_(r=0)^(n-1)(1)/(n+r)=

Lt_(ntooo)sum_(r=0)^(n-1)(n)/(n^(2)+r^(2))=

{:(" " Lt),(n rarroo):} sum_(r=1)^(n)(r)/(n^(2)+r^(2))=