Home
Class 12
MATHS
{:(" "Lt),(n rarr oo):} 1/n [Sin^(2). (p...

`{:(" "Lt),(n rarr oo):} 1/n [Sin^(2). (pi)/(2n)+Sin^(2). (2pi)/(2n)+...+Sin^(2). (npi)/(2n)]=`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

{:(" "Lt),(n rarr oo):} 1/n sum_(r=1)^(n)sec^(2).(rpi)/(4n)=

Lt_(ntooo)(1)/(n){sin^(2)""(pi)/(2n)+sin^(2)""(2pi)/(2n)+..........+sin^(2)""(npi)/(2n)}

{:(" " Lt),(n rarroo):} pi/n (sin. pi/n + sin. (2pi)/(n)+sin. (3pi)/(n)+......+sin. ((n-1)pi)/(n))=

{:(" " Lt),(n rarroo):} (pi)/(2n) (1+ cos. (pi)/(2n)+....+cos. ((n-1)pi)/(2n))=

{:(" "Lt),(n rarr oo):}(((2n)!)/(n!n^(n)))^(1/n)=

{:(" "Lt),(n rarr oo):}{ (1)/(2n+1)+(1)/(2n+2)+......+(1)/(3n)}=

{:(" "Lt),(n rarr oo):}1/n { f(1/n)+f(2/n)+...+f(2)}=

{:(" "Lt),(n rarr oo):} [ (1)/(n^(2)) sec^(2). (1)/(n^(2)) + (2)/(n^(2))sec^(2). (4)/(n^(2))+...+1/n sec^(2)1]=

{:(" "Lt),(n rarr oo):}1/n sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=