Home
Class 12
MATHS
Find Lt(n rarr oo){(sqrt(n))/(n^(3//2)) ...

Find `Lt_(n rarr oo){(sqrt(n))/(n^(3//2)) + (sqrt(n))/((n+3)^(3//2)) + …+ (sqrt(n))/([n+3(n-1)]^(3//2))}`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(n rarr oo)[(sqrt(n))/(sqrt(n^(3)))+(sqrt(n))/(sqrt((n+4)^(3)))+....+(sqrt(n))/(sqrt([n+4(n-1)]^(3)))]

Find Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))

{:(" "Lt),(n rarr oo):} [(sqrt(n^(2)-1^(2)))/(n^(2))+(sqrt(n^(2)-2^(2)))/(n^(2))+(sqrt(n^(2)-3^(2)))/(n^(2)).+....n "terms"]=

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

lim_(n to infty) (sqrt(1)+sqrt(2)+ . . . +sqrt(n))/(n^(3//2))=

Lt_(n rarr oo)(1)/(n)[e^((1)/(n))+e^((2)/(n))+....+e^((n)/(2))]