Home
Class 12
MATHS
Evaluate the limit . underset(n to 00)...

Evaluate the limit .
`underset(n to 00)("lim") [(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))………(1+(n^(2))/(n^(2)))]^(1/n)`

Text Solution

Verified by Experts

The correct Answer is:
`2e^((pi-4)/(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the limit . lim_(n to oo)l [(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))………(1+(n^(2))/(n^(2)))]^(1/n)

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

underset(n to oo)lim (1+2+3+...+n)/(n^(2))=

underset(n to oo)lim (1^(2)+2^(2)+3^(2)+...+n^(2))/(n^(3))=

Evaluate the limit . Lt_(n to oo) sum_(i=1)^(n) (i)/(n^(2)+i^(2))

underset(n to oo)lim (2^(n)-n)/(2^(n))=

Evaluate the limit . lim_(n to 00) ((n!)^(1/n))/(n)

underset(n to oo)lim (1+3+6+...+n(n+1)//2)/(n^(3))=

Evaluate the limit . lim_(n to 00) sum_(i=1)^(n) (i^(3))/(i^(4)+n^(4))

Evaluate the limit . lim_(n to 00) [(1)/(n+1)+(1)/(n+2)+…………… +(1)/(6n)]