Home
Class 12
MATHS
Evaluate the limit . underset(n to 00)...

Evaluate the limit .
`underset(n to 00)("lim") underset(i=1)overset(n)sum (i^(3))/(i^(4)+n^(4))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(4) log 2`
Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n=1)overset(oo)sum(x^(n))/(n+2)=

underset(n to oo)lim 1/n^(3) underset(k=1)overset(n)sum [k^(2)x]=

underset(n=1)overset(oo)sum(n^(2))/((n+1)!)=

underset(n=1)overset(oo)sum(x^(n+1//2))/(n+1)=

underset(n=1)overset(oo)Sigma (2n^(2)+n+1)/(n!)=

Evaluate the limit . lim_(n to 00) ((n!)^(1/n))/(n)

underset(n=1)overset(oo)Sigma(1)/((2n-1)!)=

underset(n=0)overset(oo)Sigma(1)/((n+1)!)=

Evaluate the limit . lim_(n to 00) sum_(i=1)^(n) (i^(3))/(i^(4)+n^(4))