Home
Class 12
MATHS
Evaluate the limit . underset(n to 00)...

Evaluate the limit .
`underset(n to 00)("Lt") (1+2^(4)+3^(4)+…….+n^(4))/(n^(5))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

underset(x to 0)"Lt" ((1^(x)+2^(x)+3^(x)+....+n^(x))/(n))^(1//x))

Evaluate the limit . Lt_( n to oo) (1+2^(4)+3^(4)+…….+n^(4))/(n^(5))

underset(n to oo)(Lt) (3^(3)+6^(3)+...+(3n)^(3))/(3n^(4))=

Evaluate the limit . lim_(n to 00) ((n!)^(1/n))/(n)

underset(n to oo)lim (1^(3)+2^(3)+3^(3)+...+n^(3))/(n^(4))=

Evaluate the limit . lim_(n to 00) sum_(i=1)^(n) (i^(3))/(i^(4)+n^(4))

Evaluate the limit . lim_(n to 00) [(1)/(n+1)+(1)/(n+2)+…………… +(1)/(6n)]

Evaluate the following define integrals as limit of sums : lim_(n rarr oo) (1^(4)+2^(4) +3^(4) +....+n^(4))/(n^(5))

Evaluate the limit . Lt_(n to oo) sum_(i=1)^(n) (i)/(n^(2)+i^(2))

Let f(x)= underset(n to 00) (Lt) (x^(2n)-1)/(x^(2n)+1) , then