Home
Class 12
MATHS
int(0)^(1) x e^(-x^(2))dx...

`int_(0)^(1) x e^(-x^(2))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)(1-(1)/(e))`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise-2.3 (Level-1)|40 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.4 (Level-1)|40 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (x-1) e^(-x) dx=

I=int_(0)^(1)e^(x^(2))dx satisfies the inequality

I= int_(0)^(1)e^(x^(2))dx rArr

If int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2)," then " int_(0)^(oo)e^(-ax^(2))dx,agt0 is

If I_(1) = int_(0)^(1) 2^(x^(2))dx, I_(2) = int_(0)^(1) 2^(x^(3))dx , I_(3) = int_(1)^(2) 2^(x^(2))dx, I_(4)=int_(1)^(2) 2^(x^(3))dx then

int_(0)^(1)(x)/(1+x^(2))dx=

int_(0)^(1)(1+e^(-x))dx=

int_(0)^(1) (x^2)(1+x^2) dx =

int_(0)^(1)x^(2)(1-x)^(5)dx=

int_(0)^(1000)e^(x-[x])dx=