Home
Class 12
MATHS
int(0)^(sqrt(e)) x log x dx...

`int_(0)^(sqrt(e)) x log x dx`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise-2.3 (Level-1)|40 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.4 (Level-1)|40 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals (ii) int_(1)^(sqrt(e))x log x dx

int log x dx=

int e^(3 sqrt(x)) dx =

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

Which of the following are false : Statement-I : ( int_(0)^(pi//2) (sqrt(cos x))/(sqrt(cos x + sqrt(sin x)))= pi/2 Statement-II : int_(0)^(pi//2) log(tan x) dx=1 Statement-III: int_(0)^(pi//2) log sin x dx = - pi log 2

If int_(0)^(pi//2) ln (sin x) dx= - pi/2 ln 2 then int_(0)^(pi) ln (1+ cos x) dx=

Which of the following is true Statement-I : int_(0)^(2pi) sqrt((1-cos2x)/(2)) dx=4 Statement-II : int_(-1)^(1) log((1+x)/(1-x))dx= 2 int_(0)^(1) log (1+ x)/(1-x)dx

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))