Home
Class 12
MATHS
int(0)^(1)(xe^(x))/((x+1)^(2))dx=...

`int_(0)^(1)(xe^(x))/((x+1)^(2))dx=`

Text Solution

Verified by Experts

The correct Answer is:
`(e-2)/(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise-2.3 (Level-1)|40 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.4 (Level-1)|40 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(1+e^(-x))dx=

int_(0)^(1)(x^(3))/((1+x^(2))^(3))dx=

int_(0)^(1)e^(x)(x^(x)+1)^(3)dx=

int_(0)^(1)(x^(3))/(1+x^(8))dx=

int_(-1)^(1)xe^(x)dx=

int_(0)^(1) (x^(6))/(sqrt(1-x^(2)))dx=

int_(0)^(1) (x^(5)dx)/(1+x^(4))=

int_(0)^(1)(x)/((1-x)^(5//4))dx=