Home
Class 12
MATHS
Let f(x) be a periodic function with per...

Let `f(x)` be a periodic function with period 1 and integrable over any finite interval. Also for two real numbers a and b and for any two positive intergers m and n `(m != n), int_(a)^(a+m)f(x)dx=int_(b)^(b+n)f(x)dx`. Then calculate the value of `int_(m)^(n)f(x)dx`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise-2.6 (Level-1)|14 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.7 (Level-2)|21 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.4 (Level-1)|40 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a) (f(x)+f(-x))dx=

If int_(0)^(b-c) f(x+c) dx = k int_(b)^(c) f (x) dx then k=

int_(0)^(1)x(1-x)^(n)dx=

Evaluate the integral int_(0)^(a) x(a-x)^(n)dx

If for every ineger n , int_(n)^(n+1) f(x) dx=n^(2) then the value of int_(-2)^(4) f(x)dx=

int_(0)^(a)f(x)dx=lambda and int_(0)^(a)f(2a-x)dx=mu then int_(0)^(2a)f(x) dx is equal to

If int_(n)^(n+1) f(x) dx = n^(2) +n, AA n in I then the value of int_(-3)^(3) f(x) dx is equal to

Evaluate the integerals. f sin mx cos nx dx on R, m ne n, m and n are positive intergers.