Home
Class 12
MATHS
Prove that int(0)^(x)[t] dt = ([x]([x]-1...

Prove that `int_(0)^(x)[t] dt = ([x]([x]-1))/(2) + [x](x-[x])`

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.7 (Level-2)|21 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise (Level-2)|38 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise -2.5 (Level-1)|6 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)x^(2)[x]dx=

int_(0)^([x])(2^(x))/(2^[x])dx=

int_(0)^(2)[|x|+|x-1|]dx=

int_(0)^(1)e^(x)(x^(x)+1)^(3)dx=

int_(0)^(1)(x)/(1+x^(2))dx=

Prove that int_(0)^(1) log(sqrt(1-x)+sqrt(1+x))dx = (1)/(2) log 2 + (pi)/(4) - (1)/(2)

Prove that int_(0)^(oo) e^(-2x)(sin 2x + cos 2 x) dx = (1)/(2)

Prove that int_(0)^(pi//2) tan^(-1)(sin x) .sin 2x = (pi)/(2)-1

2 int_(0)^(1) (tan^(-1)x)/(x) dx=