Home
Class 12
MATHS
{:(" "Lt),(n rarr oo):}{ (1)/(2n+1)+(1)/...

`{:(" "Lt),(n rarr oo):}{ (1)/(2n+1)+(1)/(2n+2)+......+(1)/(3n)}=`

Text Solution

Verified by Experts

The correct Answer is:
`log((3)/(2))`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise (Level-2)|38 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise-2.6 (Level-1)|14 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

{:(" " Lt),(n rarroo):} [(1)/(3n+1)+(1)/(3n+2)+.......+(1)/(4n)]=

{:(" " Lt),(n rarroo):}1/n ((1)/(n+1) +(2)/(n+2)......+3/(4n))=

{:(" "Lt),(n rarr oo):} ((n!)/(n^(n)))^(1/n)=

{:(" "Lt),(n rarr oo):}[(1)/(na)+(1)/(na+1)+(1)/(na+2).......+(1)/(nb)]=

Evaluate Lt_(n rarr oo) ((1)/(n+1) + (1)/(n+2) +..+(1)/(3n))

{:(" "Lt),(n rarr oo):}1/n { f(1/n)+f(2/n)+...+f(2)}=

Lt_(n rarr oo)[(1)/(n+1) + (1)/(n+2)+..(1)/(2n)]

{:(" "Lt),(n rarr oo):} [ (1)/(n^(2)) sec^(2). (1)/(n^(2)) + (2)/(n^(2))sec^(2). (4)/(n^(2))+...+1/n sec^(2)1]=

{:(" "Lt),(n rarr oo):} [(1)/(1-n^(2))+(2)/(1-n^(2))+...+(n)/(1-n^(2))]=

AAKASH SERIES-DEFINITE INTEGRALS-Exercise - 2.7 (Level-2)
  1. Lt(n rarr oo)[(1)/(n+1) + (1)/(n+2)+..(1)/(2n)]

    Text Solution

    |

  2. Evaluate the limit . underset(n to 00)("lim") [(1)/(n+1)+(1)/(n+2)+…...

    Text Solution

    |

  3. {:(" "Lt),(n rarr oo):}{ (1)/(2n+1)+(1)/(2n+2)+......+(1)/(3n)}=

    Text Solution

    |

  4. Lt(n rarr oo)[(1)/(3n+1) + (1)/(3n+2)+…+(1)/(4n)]

    Text Solution

    |

  5. Lt(n rarr oo)sum(r=0)^(n-1)((r)/(n^(2) + r^(2)))

    Text Solution

    |

  6. Lt(ntooo)sum(r=1)^(n)(1)/(n)[sqrt ((n+r)/(n-r))]

    Text Solution

    |

  7. Lt(n rarr oo) sum(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

    Text Solution

    |

  8. Evaluate the limit. underset(n to 00)("lim") (sqrt(n+1)+sqrt(n+2)+…...

    Text Solution

    |

  9. Lt(ntooo){(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2)+2^(2)))+.......+(1)/(sqr...

    Text Solution

    |

  10. Lt(n rarr oo)[(1)/(n)+(1)/(sqrt(n^(2) -1^(2)))+(1)/(sqrt(n^(2)-2^(2)))...

    Text Solution

    |

  11. Lt(n rarr oo)[(1n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+(n^(2))/((n+3))...

    Text Solution

    |

  12. {:(" "Lt),(n rarr oo):} [(sqrt(n^(2)-1^(2)))/(n^(2))+(sqrt(n^(2)-2^(2)...

    Text Solution

    |

  13. Lt(ntooo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n)+......+sec^(2)...

    Text Solution

    |

  14. Lt(n rarr oo)[(n^(2))/((n^(2) +1)^(3//2))+(n^(2))/((n^(2) + 2)^(3//2))...

    Text Solution

    |

  15. Lt(n rarr oo)[(sqrt(n))/(sqrt(n^(3)))+(sqrt(n))/(sqrt((n+4)^(3)))+.......

    Text Solution

    |

  16. {:(" "Lt),(n rarr oo):} [ (1)/(n^(2)) sec^(2). (1)/(n^(2)) + (2)/(n^(2...

    Text Solution

    |

  17. Lt(n rarr oo)[(1^(3))/(n^(4)+1^(4))+(2^(3))/(n^(4) + 2^(4))+....+(n^(3...

    Text Solution

    |

  18. Lt(n rarr oo)(1)/(n)[e^((1)/(n))+e^((2)/(n))+....+e^((n)/(2))]

    Text Solution

    |

  19. Lt(n rarr oo)[(1^(99)+2^(99)+3^(99)+...+n^(99))/(n^(100))]

    Text Solution

    |

  20. Evaluate underset(n to oo)("lim")[(1+(1)/(n))(1+2/n)* * * (1+(n)/(n))...

    Text Solution

    |