Home
Class 11
MATHS
If g(x) =1+sqrt(x) and f(g(x)) =3+2sqrt(...

If `g(x) =1+sqrt(x)` and `f(g(x)) =3+2sqrt(x)+x`, then f(x)=

A

`1+2x^(2)`

B

`2+x^(2)`

C

`1+x`

D

`2+x`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|50 Videos
  • FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE -I|53 Videos
  • ERRORS AND APPROXIMATIONS

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTION|15 Videos
  • HEIGHTS AND DISTANCES

    AAKASH SERIES|Exercise PRACTICE SHEET Exercise-I (Level-II) (Straight Objective Type Questions)|13 Videos

Similar Questions

Explore conceptually related problems

Suppose that g(x)= 1 +sqrt(x) and f(g(x))=3+2sqrt(x)+x , then f(x) is

If g(f(x))= |sinx | and f(g(x))=(sin sqrt(x))^(2) , then

If f(x)=sqrt(x^(3)-1) and g(x)=root(3)(x^(2)+1) , then (fog)(x)=

If f(x)=x/(sqrt(1-x^2)),g(x) = x/(sqrt(1+x^2)) , then d/(dx)(fog(x)) =

Find the domains fo the following real valued functions: (i) f(x) = sqrt(4x-x^(2)) (ii) f(x) =sqrt(2-x) + sqrt(1+x) (iii) f(x) = (sqrt(3+x) + sqrt(3-x))/x (iv) f(x) = sqrt(|x|-x) , (v) f(x) = sqrt(x-|x|) (vi) f(x) = sqrt(|x|-x)

If f(g(x)) = x and g(f(x)) = x then g(x) is the inverse of f(x) . (g'(x))f'(x) = 1 implies g'(f(x))=1/(f'(x)) Let us consider a real value bijective function g(x) sun that g'(x) = sin^2 (x+pi/4) +2 cos (x -pi/4) and g(pi/4) =3 then value of (g^(-1))(3) is

If f(g(x)) = x and g(f(x)) = x then g(x) is the inverse of f(x) . (g'(x))f'(x) = 1 implies g'(f(x))=1/(f'(x)) Let g(x) be the inverse of f(x) such that f'(x) =1/(1+x^5) ,then (d^2(g(x)))/(dx^2) is equal to

AAKASH SERIES-FUNCTIONS -EXERCISE -II
  1. If f(n)=(-1)^(n-1)(n-1) and g(n)=n-f (n)AA n in N then (gog)(n)=

    Text Solution

    |

  2. If f(1)=1, f(n+1)=2f(n)+1, n ge1, then f(n) is

    Text Solution

    |

  3. If g(x) =1+sqrt(x) and f(g(x)) =3+2sqrt(x)+x, then f(x)=

    Text Solution

    |

  4. If f: R to R is defined by f(x) = x^(2)-3x+2 and f(x^(2)-3x-2) =ax^(4)...

    Text Solution

    |

  5. If f: R to R is defined by: f(x-1) =x^(2) + 3x+2, then f(x-2)=

    Text Solution

    |

  6. The function y=f(x) satisfying the condition f(x+1//x) =x^(3)+1//x^(3...

    Text Solution

    |

  7. If f: N to Z is defined by: f(n) ={{:(2, if, n=3k, k in Z),(10-n, if...

    Text Solution

    |

  8. If f(x) = cos(log x), then f(x^(2)) . f(y^(2)) -1/2[f(x^(2)y^(2)) +f...

    Text Solution

    |

  9. If e^(f(x))=(10+x)/(10-x), x in (-10, 10) and f(x)=kf ((200x)/(100+x^(...

    Text Solution

    |

  10. f(x) = log((1+x)/(1-x)) satisfies the equation: f(x(1)) +f(x(2))

    Text Solution

    |

  11. If f(x) =|x-2| and g(x) = f(f(x)), then for x gt 20, g(x)=

    Text Solution

    |

  12. If f(x) =|x|,g(x)=x then f(x) + g(x) is equal to:

    Text Solution

    |

  13. If f(x) =x and g(x) =|x|, then f(x) + g(x) is equal to

    Text Solution

    |

  14. If f(x)=x^(2) for xlt 0, f(x)=x for 0ltxlt1, f(x)=1//x for x gt1 then ...

    Text Solution

    |

  15. Suppose f:[-2, 2] rarr RR is defined by f(x)={{:(-1" for "-2 le x le 0...

    Text Solution

    |

  16. If g[f(x)]=|sinx|, f[g(x)]=(sinsqrtx)^(2) then

    Text Solution

    |

  17. If f(x) = cos|e^(2)| x + cos[-e^(2)]x where [x] stands for greatest in...

    Text Solution

    |

  18. If f:RR rarr RR is defined by f(x)=x-[x] -(1)/(2)" for "x in RR, where...

    Text Solution

    |

  19. Let g(x) =1+x-[x] and f(x) ={{:(-1, if, x lt 0),(0, if, x=0),(1, if, x...

    Text Solution

    |

  20. If f: R to R and g: R to R are defined by f(x) =x-[x] and g(x) =[x] A...

    Text Solution

    |