Home
Class 11
MATHS
Let g(x) =1+x-[x] and f(x) ={{:(-1, if, ...

Let `g(x) =1+x-[x]` and `f(x) ={{:(-1, if, x lt 0),(0, if, x=0),(1, if, x gt 0):}`, then `(f(g(2009)))/(g(f(2009))`=

A

`x`

B

1

C

`f(x)`

D

`g(x)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|50 Videos
  • FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE -I|53 Videos
  • ERRORS AND APPROXIMATIONS

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTION|15 Videos
  • HEIGHTS AND DISTANCES

    AAKASH SERIES|Exercise PRACTICE SHEET Exercise-I (Level-II) (Straight Objective Type Questions)|13 Videos

Similar Questions

Explore conceptually related problems

Let g(x)=1+x-[x] and f(x)=-1 if x lt 0 =0 if x=0 then f[g(x)]= =1 if x gt 0

Find Lt_(x to 0)f(x) where f(x)={{:(x-1,if gt0),(0, if x=0),(x+1, if x gt 0):}

Let g(x)=1+x-[x] and f(x)= {:{(-1", "x lt 0),(0 ", "x=0),(1", "x gt 0):} . Then for all x, f(g(x)) is equal to ( where [.] represents the greatest integer function)

Find Lt_(xto0)f(x) where f(x)=f(x)={{:(x-1" if "xlt1),(0" if "x=0),(x+1" if "xgt0):}

If f,g:R to R are defined f(x) = {(0 if , x in Q),(1 if, x in Q):}, g(x) = {(-1 if , x in Q),(0 if, x !in Q):} then find (fog)(pi)+(gof)(e ) .

If f(x) =|x-2| and g(x) = f(f(x)) , then for x gt 20, g(x) =

If f(x)={{:(,1,(x lt 0)),(,2x+1,(x le 1)),(,3x,(x gt 1)):}" then "underset(x to 1)"Lt" f(x)=

If f, g, h are functions from R to R such that f(x) = x^(2)+1, g(x) =sqrt(x^(2)-1) AA x in R and h(x) = {{:(0, x le 0),(x, x ge 0):} , then AA x in R, ho(fog)(x)=

Let f(x)=|x-2|+|x-3|+|x+4| and g(x)=f(x+1) . Then g(x) is

AAKASH SERIES-FUNCTIONS -EXERCISE -II
  1. If f(x) = cos|e^(2)| x + cos[-e^(2)]x where [x] stands for greatest in...

    Text Solution

    |

  2. If f:RR rarr RR is defined by f(x)=x-[x] -(1)/(2)" for "x in RR, where...

    Text Solution

    |

  3. Let g(x) =1+x-[x] and f(x) ={{:(-1, if, x lt 0),(0, if, x=0),(1, if, x...

    Text Solution

    |

  4. If f: R to R and g: R to R are defined by f(x) =x-[x] and g(x) =[x] A...

    Text Solution

    |

  5. If f(x)=[x], g(x)=x-[x] then which of the following functions is the z...

    Text Solution

    |

  6. If f : R to R and g: R to R are given by f(x) =|x| and g(x) =[x] for e...

    Text Solution

    |

  7. f(x) = {{:([x], if, -3 lt x le -1),(|x|, if, -1 lt x lt 1),(|[-x]|, if...

    Text Solution

    |

  8. If f(x) is a polynomial fin x( gt0) satisfying the equation f(x)+f(1//...

    Text Solution

    |

  9. If f(x) is a polynomial function such that f(x)f((1)/(x))=f(x)+f((1)/(...

    Text Solution

    |

  10. If f:R to R is defined as f(x+y)=f(x)+f(y) AA x,y in R and f(1) = 7, f...

    Text Solution

    |

  11. If f(x) is a function such that f(xy)=f(x)+f(y) and f(2)=1 then f(x)=

    Text Solution

    |

  12. f: R to R is given by: f(x)= a^(x)/(a^(x) + sqrt(a)) AA x in R, then ...

    Text Solution

    |

  13. If f(x) =((x-a)(x-b))/x and (f(x))/((x-y)(x-z))+ (f(y))/((x-z)(y-z)) +...

    Text Solution

    |

  14. If 2f(x) -3f(1/x)=x^(2), x ne 0, then f(2)=

    Text Solution

    |

  15. If f(0)=0, f(1)=1, f(2)=2 and f(x)=f(x-2)+f(x-3) " for " x=3, 4, 5, ……...

    Text Solution

    |

  16. If f(x+y,x-y) =xy, then the arithmetic mean of f(x,y) and f(y,-x) is

    Text Solution

    |

  17. Assertion (A) P:f(x) =logx^(3) and g(x) =3 log x are equal functions ...

    Text Solution

    |

  18. Let f(x) =px^(2) + qx^(4) +r. Then for f to be on even function:

    Text Solution

    |

  19. If f(x) =ax^(5) + bx^(3) + cx +d is an odd function, then d=

    Text Solution

    |

  20. f{x) is an even polynomial function. Then sin(f(x)-3x) is

    Text Solution

    |