Home
Class 11
MATHS
If f(x) =(e^(x) + e^(-x))/2, then the in...

If `f(x) =(e^(x) + e^(-x))/2`, then the inverse function of f(x) is:

A

`log_(e)(x+sqrt(x^(2)+1))`

B

`log_(e)sqrt(x^(2)+1)`

C

`log_(e)(x+sqrt(x^(2)-1))`

D

`log_(e)(x-sqrt(x^(2)-1))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|50 Videos
  • FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE -I|53 Videos
  • ERRORS AND APPROXIMATIONS

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTION|15 Videos
  • HEIGHTS AND DISTANCES

    AAKASH SERIES|Exercise PRACTICE SHEET Exercise-I (Level-II) (Straight Objective Type Questions)|13 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(e^(x)+e^(-x))/(2) then the inverse of f(x) is

Find the inverse function of f(x) = 5^(x) .

Find the inverse function of f(x)=5^(x) .

Find the inverse function of f(x)=log_(2)x

If f(x) + g(x) = e^(-x) where f(x) is an even function and g(x) is an odd function then f(x) =

If f(x)=log_(e(x))((x^(2)+e)/(x^(2)+1)) , then the range of f(x) is

If f: R to R is defined by f(x) =x-[x] , then the inverse function f^(-1)(x) =

If f(x) and g(x) are two functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) then I: f(x) is an even function II : g(x) is an odd function III : Both f(x) and g(x) are neigher even nor odd.

If f(x)=a^(x).e^(x^(2)) then find f'(x) .