Home
Class 11
MATHS
If A=[(a,b),(0,c)] then A^(-1)+(A-aI)(A-...

If `A=[(a,b),(0,c)]` then `A^(-1)+(A-aI)(A-cI)=`

A

`(1)/(ac)[(a,b),(0, -c)]`

B

`(1)/(ac)[(-a,b),(0,c)]`

C

`(1)/(ac)[(c,-b),(0,a)]`

D

`(1)/(ac)[(c,b),(0,a)]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise LINEAR EQUATIONS|13 Videos
  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise PROPERTIES OF VECTORS|17 Videos
  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise DETERMINANTS|33 Videos
  • 3D-COORDINATE SYSTEM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|40 Videos
  • CHANGE OF AXES

    AAKASH SERIES|Exercise Practice Exercise|29 Videos

Similar Questions

Explore conceptually related problems

If A=[(a,b),(c,d)],I=[(1,0),(0,1)] then A^(2)-(a+d)A=

If A=[(0, 1,0),(0, 0,1),(-c,-b,-a)] then A^(3)+aA^(2)+bA+cI is

If S=[(0,1,1),(1,0,1),(1,1,0)], A=(1)/(2)[(b+c,c-a,b-a),(c-b,c+a,a-b),(b-c,a-c,a+b)] , then SAS^(-1)=

If I = [(1,0),(0,1)] and E = [(0,1),(0,0)] then show that (aI + bE)^(3) = a^(3)I+3a^(2)bE where I is identify matrix of order 2.

If f={(a, 1), (b, -2), (c, 3)}, g={(a, -2), (b, 0), (c, 1)} then f^(2)+g^(2)=

If A=[(i,0),(0,-i)],B=[(0,-1),(1,0)],C=[(0,i),(i,0)] then

In triangle ABC, triangle A^(1)B^(1)C^(1) are such that B=B^(1),A+A^(1)=180^(0) then b b^(1)+c c^(1)=