Home
Class 11
MATHS
If S=[(0,1,1),(1,0,1),(1,1,0)], A=(1)/(2...

If `S=[(0,1,1),(1,0,1),(1,1,0)], A=(1)/(2)[(b+c,c-a,b-a),(c-b,c+a,a-b),(b-c,a-c,a+b)]`, then `SAS^(-1)=`

A

`[(a,0,0),(0,b,0),(0,0,c)]`

B

`(1)/(2)[(a,0,0),(0,b,0),(0,0,c)]`

C

`2[(a,0,0),(0,b,0),(0,0,c)]`

D

`3[(a,0,0),(0,b,0),(0,0,c)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise LINEAR EQUATIONS|13 Videos
  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise PROPERTIES OF VECTORS|17 Videos
  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise DETERMINANTS|33 Videos
  • 3D-COORDINATE SYSTEM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|40 Videos
  • CHANGE OF AXES

    AAKASH SERIES|Exercise Practice Exercise|29 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0,1,1),(1,0,1),(1,1,0):}] and B=1/2[{:(b+c, c-a, b-a),(c-b, c+a, a-b),(b-c, a-c, a+b):}] , then show that ABA^(-1) is a diagonal matrix.

If A=[(1,2,-3),(5,0,2),(1,-1,1)],B=[(3,-1,2),(4,2,5),(2,0,3)] and C=[(4,1,2),(0,3,2),(1,-2,3)] , then compute (A+B) and (B-C) . Also, verify that A+(B-C)=(A+B)-C .

Knowledge Check

  • |(b+c,a,1),(c+a,b,1),(a+b,c,1)|=

    A
    0
    B
    1
    C
    abc
    D
    `a+b+c`
  • If A=[(a,b),(c,d)],I=[(1,0),(0,1)] then A^(2)-(a+d)A=

    A
    O
    B
    I
    C
    `(bc-ad)I`
    D
    `(ad-bc)I`
  • |(1,a,a^(2)+bc),(1,b,b^(2)+ac),(1,c,c^(2)+ab)|=k(a-b),(b-c), (c-a) then k =

    A
    2
    B
    `-2`
    C
    1
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    S.T |(1,a,a^2),(1,b,b^2),(1,c,c^2)| = (a-b)(b-c)(c-a) .

    If f={(1,a), (2, b), (1, b), (3,c), (1,c)}, g=(a, p), (b,r), (c,q), (c,p)} , then (gof)^(-1)=

    |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|=

    |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=

    If A=[(2),(0),(1)],B-[(4,-2,5)],C=[(0,1),(1,0),(-1,1)] then ABC=