Home
Class 11
MATHS
Show that the points -2bar(i)+3bar(j)+6b...

Show that the points `-2bar(i)+3bar(j)+6bar(k), 6bar(i)-2bar(j)+3bar(k), 3bar(i)+6bar(j)-2bar(k)` form an equilateral triangle.

Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|10 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.1 VERY SHORT ANSWER QUESTIONS|14 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISES|55 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL II) (Linked Comprehension Type Questions Passage -III:)|3 Videos
  • RATE MEASUREMENT

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - 1) (LEVEL - 1) (STRAIGHT OBJECTIVE TYPE QUESTION)|43 Videos

Similar Questions

Explore conceptually related problems

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

Show that the points A(2bar(i)-bar(j)+bar(k)), B(bar(i)-3bar(j)-5bar(k)), C(3bar(i)-4bar(j)-4bar(k)) are the vertices of a right angled triangle.

Show that the points 7bar(j)+10bar(k), -bar(i)+6bar(j)+6bar(k), -4bar(i)+9bar(j)+6bar(k) form a right angled isosceles triangle.

The points with P.V's bar(i)+2bar(j)+bar(k), 2bar(i)+3bar(j)+4bar(k) and 4bar(i)+5bar(j)+10bar(k) form

Find the position vector of the centroid of the tetrahedron formed by the points 2bar(i)-bar(j)-3bar(k), 4bar(i)+bar(j)+3bar(k), 3bar(i)+2bar(j)-bar(k), bar(i)+4bar(j)+2bar(k) .

Show that the triangle formed by the vectors 3bar(i)+5bar(j)+2bar(k), 2bar(i)-3bar(j)-5bar(k), -5bar(i)-2bar(j)+3bar(k) is equilateral.

Find the value of [bar(i)+bar(j)+bar(k),bar(i)-bar(j),bar(i)+2bar(j)-bar(k)] .

If the position vectors of the points A,B,C are -2bar(i)+bar(j)-bar(k), -4bar(i)+2bar(j)+2bar(k), 6bar(i)-3bar(j)-13bar(k) respectively and bar(AB) = lambda bar(AC) then find the value of lambda .

Find t, for which the vectors 2bar(i) - 3bar(j) + bar(k), bar(i) + 2bar(j) -3bar(k) , bar(j) - tbar(k) are coplanar.