Home
Class 11
MATHS
If bar(a), bar(b), bar(c) are non coplan...

If `bar(a), bar(b), bar(c)` are non coplanar, show that the vectors `bar(a)+2bar(b)-bar(c), 2bar(a)-3bar(b)+2bar(c), 4bar(a)+bar(b)+3bar(c)` are linearly independent.

Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|10 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.1 VERY SHORT ANSWER QUESTIONS|14 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISES|55 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL II) (Linked Comprehension Type Questions Passage -III:)|3 Videos
  • RATE MEASUREMENT

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - 1) (LEVEL - 1) (STRAIGHT OBJECTIVE TYPE QUESTION)|43 Videos

Similar Questions

Explore conceptually related problems

If bar(a), bar(b), bar(c) are non coplanar then the vectors bar(a)-2bar(b)+3bar(c), -2bar(a)+3bar(b)-4bar(c), bar(a)-3bar(b)+5bar(c) are

If bar(a), bar(b), bar(c) are linearly independent vectors, then show that bar(a)-3bar(b)+2bar(c), 2bar(a)-4bar(b)-bar(c), 3bar(a)+2bar(b)-bar(c) are linearly independent.

i) If bar(a), bar(b), bar(c) are non coplanar vectors, then prove that the vectors 5bar(a)-6bar(b)+7bar(c), 7bar(a)-8bar(b)+9bar(c) and bar(a)-3bar(b)+5bar(c) are coplanar.

The points 2bar(a)+3bar(b)+bar(c), bar(a)+bar(b), 6bar(a)+11bar(b)+5bar(c) are

Show that bar(a)=bar(i)+2bar(j)+bar(k), bar(b)=2bar(i)+bar(j)+3bar(k) and bar(c)=bar(i)+bar(k) are linearly independent.

Prove that the following four points are coplanar. i) 4bar(i)+5bar(j)+bar(k), -bar(j)-bar(k), 3bar(i)+9bar(j)+4bar(k), -4bar(i)+4bar(j)+4bar(k) ii) -bar(a)+4bar(b)-3bar(c), 3bar(a)+2bar(b)-5bar(c), -3bar(a)+8bar(b)-5bar(c), -3bar(a)+2bar(b)+bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors) iii) 6bar(a)+2bar(b)-bar(c), 2bar(a)-bar(b)+3bar(c), -bar(a)+2bar(b)-4bar(c), -12bar(a)-bar(b)-3bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors)

If bar(a), bar(b), bar(c) are non coplanar vectors and lambda is a real number, then the vectors bar(a)+2bar(b)+3bar(c), lambdabar(b)+4bar(c) and (2lambda-1)bar(c) are non-coplanar for

S.T the points whose P.V are bar(a) - 2bar(b) + 3bar(c ), 2bar(a)+3bar(b)-4bar(c ), -7bar(b)+10bar(c ) are collinear.

Show that the following vectors are linearly dependent 3bar(a)-2bar(b)-4bar(c), -bar(a)+2bar(c), -2bar(a)+bar(b)+3bar(c)