Home
Class 11
MATHS
Show that bar(a)=bar(i)+2bar(j)+bar(k), ...

Show that `bar(a)=bar(i)+2bar(j)+bar(k), bar(b)=2bar(i)+bar(j)+3bar(k) and bar(c)=bar(i)+bar(k)` are linearly independent.

Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|10 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.1 VERY SHORT ANSWER QUESTIONS|14 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISES|55 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL II) (Linked Comprehension Type Questions Passage -III:)|3 Videos
  • RATE MEASUREMENT

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - 1) (LEVEL - 1) (STRAIGHT OBJECTIVE TYPE QUESTION)|43 Videos

Similar Questions

Explore conceptually related problems

If bar(a)=bar(i)+bar(j)+bar(k), bar(b)=4bar(i)+3bar(j)+4bar(k), bar(c)=bar(i)+alphabar(j)+betabar(k) are linearly dependent vectors and abs(bar(c))=sqrt(3) then

If the vectors bar(a)=bar(i)+bar(j)+bar(k), bar(b)=4bar(i)+3bar(j)+4bar(k), and bar(c)=bar(i)+alphabar(j)+betabar(k) are linearly dependent and abs(bar(c))=sqrt(3) then show that alpha=pm1, beta=1

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.

If bar(a)=bar(i)+4bar(j), bar(b)=2bar(i)-3bar(j) and bar(c)=5bar(i)+9bar(j)" then "bar(c)=

If the vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) + 2bar(j)-3bar(k), bar(c ) = 3bar(i) + pbar(j) +5bar(k) are coplanar then find p.

If bar(OP)=2bar(i)+3bar(j)-bar(k), bar(OQ)=3bar(i)-4bar(j)+2bar(k) then d.c's of bar(PQ) are

If bar(a) = bar(i) + 2bar(j)-3bar(k), bar(b) = 3bar(i)-bar(j)+2bar(k) then S.T bar(a)+bar(b), bar(a)-bar(b) are perpendicular.

If bar(a) = bar(i) - 2bar(j) - 3bar(k), bar(b) = 3bar(i) -bar(j)+2bar(k) then S.T bar(a)+bar(b).bar(a)-bar(b) are perpendicular.

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

If bar(a)=2bar(i)-bar(j)+k, bar(b)=bar(i)+3bar(j)-2bar(k), bar(c)=-2bar(i)+bar(j)-3bar(k) and bar(d)=3bar(i)+2bar(j)-5bar(k) and if bar(d)=pbar(a)+qbar(b)+rbar(c) then show that q,p/2,r are in A.P.