Home
Class 11
MATHS
ABCDE is a pentagon. If the sum of the v...

ABCDE is a pentagon. If the sum of the vectors
`bar(AB),bar(AE), bar(BC), bar(DC), bar(ED), bar(AC)` is `lambda bar(AC)` then find the value of `lambda`.

Text Solution

Verified by Experts

The correct Answer is:
`lambda=3`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.2 VERY SHORT ANSWER QUESTIONS|3 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.2 SHORT ANSWER QUESTIONS|6 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.1 VERY SHORT ANSWER QUESTIONS|14 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL II) (Linked Comprehension Type Questions Passage -III:)|3 Videos
  • RATE MEASUREMENT

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - 1) (LEVEL - 1) (STRAIGHT OBJECTIVE TYPE QUESTION)|43 Videos

Similar Questions

Explore conceptually related problems

ABCD is a pentagon. If the sum of the vectors bar(AB), bar(AE), bar(BC), bar(DC), bar(ED) and bar(AC) is lambda bar(AC) , then find the value of lambda

ABCDE is a pentagon . If the sum of vectors bar(AB),bar(AE),bar(BC),bar(DC),bar(ED),bar(AC)" is "lamdabar(AC) then find the value of lamda .

Knowledge Check

  • ABCDE is a pentagon then bar(AB)+bar(AE)+bar(BC)+bar(DC)+bar(ED)+bar(AC)=

    A
    `3bar(AC)`
    B
    `bar(AC)`
    C
    `2bar(AC)`
    D
    `4bar(AC)`
  • ABCDEF is a regular hexagon. If bar(AB)+bar(AE)+bar(BC)+bar(DC)+bar(ED)+bar(AC)=lambdabar(AC)" then "lambda=

    A
    1
    B
    2
    C
    3
    D
    4
  • If ABCD is a parallelogram such that bar(AB)=bar(a), bar(BC)=bar(b)" then "bar(AC), bar(BD) are

    A
    `bar(a)+bar(b), bar(b)-bar(a)`
    B
    `bar(a)+bar(b), bar(a)-bar(b)`
    C
    `bar(a)+bar(b),-bar(a)-bar(b)`
    D
    both 1 and 2
  • Similar Questions

    Explore conceptually related problems

    If the position vectors of the points A,B,C are -2bar(i)+bar(j)-bar(k), -4bar(i)+2bar(j)+2bar(k), 6bar(i)-3bar(j)-13bar(k) respectively and bar(AB) = lambda bar(AC) then find the value of lambda .

    ABCDEF is a regualar hexagon whose centre is O. Then bar(AB)+bar(AC)+bar(AD)+bar(AE)+bar(AF) is

    ABC is an equitateral triangle of side 'a'. Then bar(AB).bar(BC)+bar(BC).bar(CA)+bar(CA).bar(AB) =

    ABCDEF is a regular hexagon. If bar(AB)=bar(a), bar(BC)=bar(b)" then "bar(CE)=

    ABCDEF is a regular hexagon. If bar(AB)=bar(a), bar(BC)=bar(b)" then "bar(FA)=