Home
Class 11
MATHS
If the points with position vectors 60ba...

If the points with position vectors `60bar(i)+3bar(j), 40bar(i)-8bar(j), abar(i)-52bar(j)` are collinear then a =

A

-40

B

40

C

-80

D

80

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISES|55 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - I|31 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL II) (Linked Comprehension Type Questions Passage -III:)|3 Videos
  • RATE MEASUREMENT

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - 1) (LEVEL - 1) (STRAIGHT OBJECTIVE TYPE QUESTION)|43 Videos

Similar Questions

Explore conceptually related problems

Show that the four points with position vectors 3bar(i)+5bar(j), 3bar(j)-5k, 5bar(i)-19bar(j)-3bar(k), 6bar(i)-5bar(j) are non coplanar.

Find the direction cosines of the line joining the points with position vectors -bar(i)+bar(j)+bar(k), 2bar(i)+3bar(j)-5bar(k) .

Knowledge Check

  • If bar(i)-2bar(j), 3bar(j)+bar(k), lambdabar(i)+3bar(j) are coplanar then lambda=

    A
    -1
    B
    `1/2`
    C
    `-3/2`
    D
    2
  • The position vector of a point lying on the line joining the points whose position vectors are bar(i)+bar(j)-bar(k) and bar(i)-bar(j)+bar(k) is

    A
    `bar(j)`
    B
    `bar(i)`
    C
    `bar(k)`
    D
    `bar(0)`
  • If the points whose position vectors are 2bar(i)+bar(j)+bar(k), 6bar(i)-bar(j)+2bar(k)" and "14bar(i)-5bar(j)+pbar(k) are collinear, then the value of p is

    A
    2
    B
    4
    C
    6
    D
    8
  • Similar Questions

    Explore conceptually related problems

    Write the position vector of the centroid of the triangle formed by the points whose position vectors are 3bar(i)+2bar(j)-bar(k), 2bar(i)-2bar(j)+5bar(k), bar(i)+3bar(j)-bar(k) .

    Compute [bar(i) - bar(j). bar(j) - bar(k). bar(k) -bar(i)] .

    If vectors -3bar(i)+4bar(j)+lambdabar(k), mubar(i)+8bar(j)+6bar(k) are collinear vectors then find lambda & mu .

    Let a, b, g be the distinct real numbers. The points with position vectors abar(i)+b""bar(j)+gbar(k), b""bar(i)+gbar(j)+abar(k), gbar(i)+abar(j)+b""bar(k) are

    The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)