Home
Class 11
MATHS
i) If bar(a), bar(b), bar(c) are non cop...

i) If `bar(a), bar(b), bar(c)` are non coplanar vectors, then prove that the vectors `5bar(a)-6bar(b)+7bar(c), 7bar(a)-8bar(b)+9bar(c) and bar(a)-3bar(b)+5bar(c)` are coplanar.

A

Collinear

B

Coplanar but non collinear

C

non coplanar

D

cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISES|55 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - I|31 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL II) (Linked Comprehension Type Questions Passage -III:)|3 Videos
  • RATE MEASUREMENT

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - 1) (LEVEL - 1) (STRAIGHT OBJECTIVE TYPE QUESTION)|43 Videos

Similar Questions

Explore conceptually related problems

If bar(a), bar(b), bar(c) are non coplanar, show that the vectors bar(a)+2bar(b)-bar(c), 2bar(a)-3bar(b)+2bar(c), 4bar(a)+bar(b)+3bar(c) are linearly independent.

If bar(a), bar(b), bar(c) are non coplanar then the vectors bar(a)-2bar(b)+3bar(c), -2bar(a)+3bar(b)-4bar(c), bar(a)-3bar(b)+5bar(c) are

If bar(a), bar(b), bar(c) are non coplanar vectors and lambda is a real number, then the vectors bar(a)+2bar(b)+3bar(c), lambdabar(b)+4bar(c) and (2lambda-1)bar(c) are non-coplanar for

If bar(a), bar(b), bar(c) are linearly independent vectors, then show that bar(a)-3bar(b)+2bar(c), 2bar(a)-4bar(b)-bar(c), 3bar(a)+2bar(b)-bar(c) are linearly independent.

The points 2bar(a)+3bar(b)+bar(c), bar(a)+bar(b), 6bar(a)+11bar(b)+5bar(c) are

If bar(a), bar(b), bar(c) are three non-coplanar vectors, then the vector equation bar(r)=(1-p-q)bar(a)+pbar(b)+qbar(c) represents

bar(a) , bar(b), bar (c ) , are non-coplanar vectors, Prove that the following four points are coplanar. 6bar(a) + 2bar(b) - bar(c ), 2bar(a) - bar(b) + 3bar(c ), -bar(a) + 2bar(b)-4bar(c ), -12bar(a)-bar(b)-3bar(c ) .

Prove that the following four points are coplanar. i) 4bar(i)+5bar(j)+bar(k), -bar(j)-bar(k), 3bar(i)+9bar(j)+4bar(k), -4bar(i)+4bar(j)+4bar(k) ii) -bar(a)+4bar(b)-3bar(c), 3bar(a)+2bar(b)-5bar(c), -3bar(a)+8bar(b)-5bar(c), -3bar(a)+2bar(b)+bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors) iii) 6bar(a)+2bar(b)-bar(c), 2bar(a)-bar(b)+3bar(c), -bar(a)+2bar(b)-4bar(c), -12bar(a)-bar(b)-3bar(c)" ("bar(a), bar(b), bar(c) are non-coplanar vectors)

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.

AAKASH SERIES-PROPERTIES OF VECTORS-EXERCISE - II
  1. The points with P.V's bar(i)+2bar(j)+bar(k), 2bar(i)+3bar(j)+4bar(k) a...

    Text Solution

    |

  2. The points 2bar(a)+3bar(b)+bar(c), bar(a)+bar(b), 6bar(a)+11bar(b)+5ba...

    Text Solution

    |

  3. i) If bar(a), bar(b), bar(c) are non coplanar vectors, then prove that...

    Text Solution

    |

  4. If bar(a), bar(b), bar(c) are non coplanar then the vectors bar(a)-2ba...

    Text Solution

    |

  5. The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+ba...

    Text Solution

    |

  6. Let bar(a)=bar(i)+bar(j), bar(b)=bar(j)+bar(k) and bar(c)=alphabar(a)+...

    Text Solution

    |

  7. The number of distinct real values of lambda for which the vectors -la...

    Text Solution

    |

  8. If bar(a)=bar(i)+bar(j)+bar(k), bar(b)=4bar(i)+3bar(j)+4bar(k), bar(c)...

    Text Solution

    |

  9. If bar(a)=2bar(i)-bar(j)+3bar(k), bar(b)=-bar(i)+4bar(j)-2bar(k), bar(...

    Text Solution

    |

  10. If the points A(bar(a)), B(bar(b)), C(bar(c)) satisfy the relation 3ba...

    Text Solution

    |

  11. If xbar(a)+ybar(b)+zbar(c),xbar(b)+ybar(c)+zbar(a),xbar(c)+ybar(a)+zba...

    Text Solution

    |

  12. If bar(r)=3bar(i)+2bar(j)-5bar(k), bar(a)=2bar(i)-bar(j)+bar(k), bar(b...

    Text Solution

    |

  13. The vector of magnitude 3sqrt(6) along the bisector of the angle betwe...

    Text Solution

    |

  14. The vector abar(i)+b""bar(j)+cbar(k) is a bisector of the angle betwee...

    Text Solution

    |

  15. If the vector -bar(i)+bar(j)-bar(k) bisects the angles between the vec...

    Text Solution

    |

  16. If A(1, -1, -3), B(2, 1, -2), C(-5, 2, -6) are the vertices of a Delta...

    Text Solution

    |

  17. The median AD of the triangle ABC is bisected at E. BE meets AC in F t...

    Text Solution

    |

  18. If S is the circumcentre, G the centroid, O the orthocentre of Delta A...

    Text Solution

    |

  19. If S is the circumcentre, O is the orthocentre of Delta ABC then vec(O...

    Text Solution

    |

  20. The P.V.'s of the vertices of a DeltaABC are bar(i)+bar(j)+bar(k), 4ba...

    Text Solution

    |