Home
Class 11
MATHS
The number of distinct real values of la...

The number of distinct real values of `lambda` for which the vectors `-lambda^(2)bar(i)+bar(j)+bar(k), bar(i)-lambda^(2)bar(j)+bar(k), bar(i)+bar(j)-lambda^(2)bar(k)` are coplanar is

A

2

B

4

C

5

D

9

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise PRACTICE EXERCISES|55 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - I|31 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL II) (Linked Comprehension Type Questions Passage -III:)|3 Videos
  • RATE MEASUREMENT

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - 1) (LEVEL - 1) (STRAIGHT OBJECTIVE TYPE QUESTION)|43 Videos

Similar Questions

Explore conceptually related problems

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

Find t, for which the vectors 2bar(i) - 3bar(j) + bar(k), bar(i) + 2bar(j) -3bar(k) , bar(j) - tbar(k) are coplanar.

If the vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) + 2bar(j)-3bar(k), bar(c ) = 3bar(i) + pbar(j) +5bar(k) are coplanar then find p.

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.

If bar(i)-2bar(j), 3bar(j)+bar(k), lambdabar(i)+3bar(j) are coplanar then lambda=

If 3bar(i)+3bar(j)+sqrt(3)bar(k), bar(i)+bar(k), sqrt(3)bar(i)+sqrt(3)bar(j)+lambdabar(k) are coplanar then lambda=

For what values of lambda the vectors bar(i) - lambda bar(j) + 2bar(k), 8bar(i) + 6bar(j) - bar(k) are at right angles.

Show that bar(a)=bar(i)+2bar(j)+bar(k), bar(b)=2bar(i)+bar(j)+3bar(k) and bar(c)=bar(i)+bar(k) are linearly independent.

Find the value of [bar(i)+bar(j)+bar(k),bar(i)-bar(j),bar(i)+2bar(j)-bar(k)] .

AAKASH SERIES-PROPERTIES OF VECTORS-EXERCISE - II
  1. The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+ba...

    Text Solution

    |

  2. Let bar(a)=bar(i)+bar(j), bar(b)=bar(j)+bar(k) and bar(c)=alphabar(a)+...

    Text Solution

    |

  3. The number of distinct real values of lambda for which the vectors -la...

    Text Solution

    |

  4. If bar(a)=bar(i)+bar(j)+bar(k), bar(b)=4bar(i)+3bar(j)+4bar(k), bar(c)...

    Text Solution

    |

  5. If bar(a)=2bar(i)-bar(j)+3bar(k), bar(b)=-bar(i)+4bar(j)-2bar(k), bar(...

    Text Solution

    |

  6. If the points A(bar(a)), B(bar(b)), C(bar(c)) satisfy the relation 3ba...

    Text Solution

    |

  7. If xbar(a)+ybar(b)+zbar(c),xbar(b)+ybar(c)+zbar(a),xbar(c)+ybar(a)+zba...

    Text Solution

    |

  8. If bar(r)=3bar(i)+2bar(j)-5bar(k), bar(a)=2bar(i)-bar(j)+bar(k), bar(b...

    Text Solution

    |

  9. The vector of magnitude 3sqrt(6) along the bisector of the angle betwe...

    Text Solution

    |

  10. The vector abar(i)+b""bar(j)+cbar(k) is a bisector of the angle betwee...

    Text Solution

    |

  11. If the vector -bar(i)+bar(j)-bar(k) bisects the angles between the vec...

    Text Solution

    |

  12. If A(1, -1, -3), B(2, 1, -2), C(-5, 2, -6) are the vertices of a Delta...

    Text Solution

    |

  13. The median AD of the triangle ABC is bisected at E. BE meets AC in F t...

    Text Solution

    |

  14. If S is the circumcentre, G the centroid, O the orthocentre of Delta A...

    Text Solution

    |

  15. If S is the circumcentre, O is the orthocentre of Delta ABC then vec(O...

    Text Solution

    |

  16. The P.V.'s of the vertices of a DeltaABC are bar(i)+bar(j)+bar(k), 4ba...

    Text Solution

    |

  17. The P.V.'s of the vertices of a triangle are 2bar(i)+3bar(j)+4bar(k), ...

    Text Solution

    |

  18. DeltaABC be an equilateral triangle whose orthocentre is the origin 'O...

    Text Solution

    |

  19. The P.V.'s of A, B, C are bar(i)+bar(j)+bar(k), 4bar(i)+bar(j)+bar(k),...

    Text Solution

    |

  20. In a DeltaABC, P.V.'s of midpoints of AB, AC are bar(i)-bar(j)+bar(k),...

    Text Solution

    |