Home
Class 11
MATHS
If vec(a) + 2vec(b) + 4vec(c ) = vec(0) ...

If `vec(a) + 2vec(b) + 4vec(c ) = vec(0)` then show that `vec(a) xx vec(b) =4 (vec(b) xx vec(c ))= 2(vec(c ) xx vec(a))`

Answer

Step by step text solution for If vec(a) + 2vec(b) + 4vec(c ) = vec(0) then show that vec(a) xx vec(b) =4 (vec(b) xx vec(c ))= 2(vec(c ) xx vec(a)) by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-I|22 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-II|47 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-3.1 ( Short Answer Questions)|23 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

If the vectors vec(a), vec(b), vec(c ) form the sides vec(BC), vec(CA), vec(AB) respectively of triangle ABC then show that vec(a) xx vec(b) = vec(b)xx vec(c ) = vec(c ) xx vec(a) .

If vec(a) = 7vec(i) -2vec(j) + 3vec(k), vec(b)= 2vec(i) + 8vec(k), vec(c ) =vec(i) + vec(j) + vec(k) , then verify that vec(a) xx (vec(b) + vec(c ))= (vec(a) xx vec(b)) + (vec(a) xx vec(c )) (or) prove that cross product is distributive over addition

Knowledge Check

  • (vec(a) xx vec(b), vec(b) xx vec(a)) =

    A
    `180^(@)`
    B
    `90^(@)`
    C
    `120^(@)`
    D
    `60^(@)`
  • If vec(a) + 2vec(b) + 4 vec(c )= vec(0) , then vec(a) xx vec(b) + vec(b) xx vec(c )+ vec(c )xx vec(a)=

    A
    0
    B
    `1(vec(b) xx vec(c ))`
    C
    `2(vec(b) xx vec(c ))`
    D
    `7(vec(b) xx vec(c ))`
  • If vec(C) = vec(A) + vec(B) then

    A
    `vec(C)` is always greater than `|vec(A)|`
    B
    C is always equal to A+B
    C
    C is never equal to A+B
    D
    It is possible to have `|vec(C)| lt |vec(A)|` and `|vec(C)| lt |vec(B)|`
  • Similar Questions

    Explore conceptually related problems

    Let vec(a) + m vec(b) + n vec(c )= vec(0).vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a)= vec(0) for

    If vec(a) + vec(b) + vec(c )= vec(0) and |vec(a) xx vec(b)|=3 , then |vec(b) xx vec(c )| =

    If vec(a)= -vec(i) + vec(j) + vec(k), vec(b)= vec(i)-vec(j) + vec(k), vec(c )= vec(i) + vec(j)-vec(k) , then the vectors vec(a) xx vec(b), vec(b) xx vec(c ), vec(c ) xx vec(a) are

    If vec(a)= vec(i) + vec(j) + vec(k), vec(b)= 2vec(i)-3vec(j) + vec(k) , then (vec(a) xx vec(b))/(|vec(a) xx vec(b)|) + (vec(b) xx vec(a))/(|vec(b) xx vec(a)|) =

    If three vectors vec(a), vec(b), vec(c ) are such that vec(a) ne vec(0) and vec(a) xx vec(b)=2 (vec(a) xx vec(c )), |vec(a)| = |vec(c )| =1, |vec(b)|=4 and the angle between vec(b) and vec(c ) is cos^(-1) ((1)/(4)) , then vec(b)-2vec(c )= lamda vec(a) where lamda =