Home
Class 11
MATHS
If vec(r )= x vec(i) + y vec(j) + z vec(...

If `vec(r )= x vec(i) + y vec(j) + z vec(k)` then find `(vec(r ) xx vec(i))^(2)- (vec(r )xx vec(k))^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`z^(2)-x^(2)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-I|22 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-II|47 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-3.1 ( Short Answer Questions)|23 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

If vec(r )= x vec(i) + y vec(j) + z vec(k) then (vec(r ) xx vec(i)).(vec(r ) xx vec(j)) + xy=

vec(a)= 2vec(i) + vec(j) -vec(k), vec(b)= -vec(i) + 2vec(j)- 4vec(k) and vec(c )= vec(i) + vec(j) + vec(k) , then find (vec(a) xx vec(b)).(vec(b) xx vec(c )) .

If |vec(a)| = |vec(b)|=2 , then (vec(a) xx vec(b))^(2) + (vec(a).vec(b))^(2)=

vec(a)= 3vec(i)- vec(j) + 2vec(k), vec(b)= -vec(i) + 3vec(j) + 2vec(k), vec(c )= 4vec(i) + 5vec(j)- 2vec(k) and vec(d)= vec(i) + 3vec(j) + 5vec(k) , then compute (vec(a) xx vec(b)).vec( c) - (vec(a) xx vec(d)).vec(b)

If vec(a)= 2vec(i)-3 vec(j) + vec(k). vec(b)= vec(i) + 4vec(j)- 2vec(k) , then find (vec(a) + vec(b)) xx (vec(a) - vec(b)) .

For any vector vec(a) , the value of (vec(a) xx vec(i))^(2) + (vec(a) xx vec(j))^(2) + (vec(a) xx vec(k))^(2)=

Which of the following statements are true. Statement-I: (vec(r ).vec(i)) (vec(r )xx vec(i)) + (vec(r ).vec(j)) (vec(r ) xx vec(j)) + (vec(r ).vec(k)) (vec(r )xx vec(k)) = vec(r ) Statement-II: If vec(a) xx vec(b)= vec(0), vec(a).vec(b)=0 , then one of vec(a),vec(b) is a null vector.

Assertion (A): Let vec(a) = a_(1) vec(i) + a_(2) vec(j) + a_(3) vec(k) . Then identity |vec(a) xx vec(i)|^(2) + |vec(a) xx vec(j)|^(2) + |vec(a) xx vec(k)|^(2) =2|vec(a)|^(2) holds for vec(a) . Reason (R ): vec(a) xx vec(i) = a_(3) vec(j)- a_(2) vec(k), vec(a) xx vec(j) = a_(1) vec(k) - a_(3) vec(i), vec(a) xx vec(k)= a_(2) vec(i) - a_(1) vec(j) Which of the following is correct ?

If vec(a) = 7vec(i) -2vec(j) + 3vec(k), vec(b)= 2vec(i) + 8vec(k), vec(c ) =vec(i) + vec(j) + vec(k) , then verify that vec(a) xx (vec(b) + vec(c ))= (vec(a) xx vec(b)) + (vec(a) xx vec(c )) (or) prove that cross product is distributive over addition

If vec(a) + 2vec(b) + 4 vec(c )= vec(0) , then vec(a) xx vec(b) + vec(b) xx vec(c )+ vec(c )xx vec(a)=