Home
Class 11
MATHS
If vec(c ) is a unit vector perpendicula...

If `vec(c )` is a unit vector perpendicular to both `vec(a) = vec(i) + 5vec(j) + vec(k) and vec(b)= 2vec(i) - vec(j) + vec(k)` such that `vec(a), vec(b), vec(c )` form right handed system then find `vec(c )`.

Text Solution

Verified by Experts

The correct Answer is:
`(6vec(i) + vec(j) -11vec(k))/(sqrt158)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-I|22 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-II|47 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-3.1 ( Short Answer Questions)|23 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

A unit vector perpendicular to 2vec(i) + 3vec(j) + 4vec(k) and 3vec(j) + 2vec(k) is

Find the unit vectors perpendicular to both the vectors 2vec(i)- 3vec(j) + 5vec(k) and -vec(i) + 4vec(j) + 2vec(k)

If vec(a)= 2vec(i) -vec(j) + 3vec(k), vec(b)= p vec(i) + vec(j) + q vec(k) and vec(b) xx vec(a) = vec(0) , then

If vec(a)= 2vec(i)-vec(j) +vec(k), vec(b)= 3vec(i) + 4vec(j) -vec(k) , then |vec(a) xx vec(b)|=

Find a vector of length sqrt6 and perpendicular to both vec(a)= 2vec(i) -vec(k), vec(b)= 3vec(i)-vec(j)-vec(k)

Find a vector of magnitude and perpendicular to both the vectors vec(a)= 2vec(i)- 2vec(j) + vec(k) and vec(b)= 2vec(i) + 2vec(j) + 3vec(k)

If vec(a)= 2vec(i) + 3vec(j)- 5vec(k), vec(b)= m vec(i) + n vec(j) + 12 vec(k) and vec(a) xx vec(b) = vec(0) then (m, n)=

If vec(a)= 3 vec(i)- vec(j)-2vec(k), vec(b)= 2vec(i) + 3vec(j) + vec(k) , then (vec(a) + 2vec(b)) xx (2vec(a) - vec(b)) =

A vector of magnitude 6 which is perpendicular to both 4vec(i) - vec(j) + 3vec(k) and -2vec(i) + vec(j) - 2vec(k) is

Any vector which is perpendicular to each of the vectors 2vec(i) + vec(j) -vec(k) and 3vec(i) -vec(j) + vec(k) is normal to