Home
Class 11
MATHS
If |vec(a)|=sqrt3, |vec(b)|=2, (vec(a), ...

If `|vec(a)|=sqrt3, |vec(b)|=2, (vec(a), vec(b))= (pi)/(3)`, then the area of the triangle with adjacent sides `vec(a) + 2vec(b) and 2vec(a) + vec(b)` (in sq.u) is

Text Solution

Verified by Experts

The correct Answer is:
30 sq units
Promotional Banner

Topper's Solved these Questions

  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-I|22 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-II|47 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-3.1 ( Short Answer Questions)|23 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

If |vec(a) xx vec(b)|=6, |vec(a)|=6, (vec(a), vec(b))= (pi)/(3) , then |vec(b)| =

If |vec(a)|= |vec(b)|=5, (vec(a), vec(b))= 45^(@) , then find the area of triangle constructed with the vectors vec(a)- 2vec(b), 3vec(a) + 2vec(b) as adjacent sides

The vector area of the parallelogram whose adjacent sides vec(i) + vec(j) + vec(k) and 2vec(i)-vec(j) + 2vec(k) is

If |vec(a)| = |vec(b)|=2 , then (vec(a) xx vec(b))^(2) + (vec(a).vec(b))^(2)=

Let vec(a)= vec(i) + vec(j), vec(b)= 2vec(i) -vec(k) . Then the point of intersection of the lines vec(r ) xx vec(a) = vec(b) xx vec(a) and vec(r ) xx vec(b)= vec(a) xx vec(b) is

The area of the parallelogram whose adjacent sides are 3vec(i) + 2vec(j) + vec(k), 3vec(i) + vec(k) " is " (p)/(2) sq.u, then p=

If |vec(a)|= |vec(b)| =1 and |vec(a) xx vec(b)|= vec(a).vec(b) , then |vec(a) + vec(b)|^(2)=

Statement-I: If |vec(a).vec(b)|= |vec(a) xx vec(b)| then (vec(a), vec(b))= (pi)/(4) or (3pi)/(4) Statement-II: If vec(a).vec(b)= |vec(a) xx vec(b)| then (vec(a), vec(b))= (pi)/(4) or (3pi)/(4) Which of the above two statements are true?

If vec(a)= 2vec(i) + vec(j)-3vec(k), vec(b)=vec(i) -2vec(j) + vec(k) , then a vector of length and perpendicular to both vec(a) and vec(b) is

If vec(a) = vec(i) + 2vec(j) - 3vec(k), vec(b)= 2vec(i) + vec(j) - vec(k) and vec(u) is a vector satisfying vec(a) xx vec(u) = vec(a) xx vec(b) and vec(a).vec(u)= 0 , then 2|vec(u)|^(2) =