Home
Class 11
MATHS
Find the moment of force vec(F) = 4vec(i...

Find the moment of force `vec(F) = 4vec(i) + 2vec(j) + vec(k)` through the point `5vec(i) + 2vec(j) + 4vec(k)` about the point `3vec(i) - vec(j) + 3vec(k)`.

Text Solution

Verified by Experts

The correct Answer is:
`vec(i)+ 2vec(j)- 8vec(k)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-I|22 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-II|47 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-3.1 ( Short Answer Questions)|23 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

Assertion (A): The torque about the point 3vec(i)-vec(j) + 3vec(k) of a force represented by 4vec(i) + 2vec(j) + vec(k) through the point 5vec(i) + 2vec(j) + 4vec(k) is vec(i) + 2vec(j)-8vec(k) Reason (R ): The torque of a force F about a point P is vec(r ) xx vec(F ) where vec(r ) is the vector from the point P to any point vec(a) on the line of action of vec(F ) Which of the following is correct ?

Find the angle between the vectors vec(i) + 2vec(j) + 3vec(k) and 3vec(i) - vec(j) + 2vec(k) .

If vec(r )= x vec(i) + y vec(j) + z vec(k) then (vec(r ) xx vec(i)).(vec(r ) xx vec(j)) + xy=

A unit vector normal to the plane through the points vec(i), 2vec(j) and 3vec(k) is

If vec(a)= 2vec(i)-3 vec(j) + vec(k). vec(b)= vec(i) + 4vec(j)- 2vec(k) , then find (vec(a) + vec(b)) xx (vec(a) - vec(b)) .

If vec(a)= 2vec(i) + 3vec(j)- 5vec(k), vec(b)= m vec(i) + n vec(j) + 12 vec(k) and vec(a) xx vec(b) = vec(0) then (m, n)=

The distance of the point B with P.V. vec(i) + 2vec(j) + 3vec(k) from the line through A with P.V. 4vec(i) + 2vec(j) + 2vec(k) are parallel to the vector 2vec(i) + 3vec(j) + 6vec(k) is

If vec(a)= 2vec(i) -vec(j) + 3vec(k), vec(b)= p vec(i) + vec(j) + q vec(k) and vec(b) xx vec(a) = vec(0) , then

If vec(r )= x vec(i) + y vec(j) + z vec(k) then find (vec(r ) xx vec(i))^(2)- (vec(r )xx vec(k))^(2)

Equation of the plane containing the lines vec(r )= vec(i) + 2vec(j) -vec(k) + lamda (vec(i) + 2vec(j)-vec(k)), vec(r )=vec(i) + 2vec(j) -vec(k)+ mu (vec(i) + vec(j) + 3vec(k)) is