Home
Class 11
MATHS
Let vec(a)= 2vec(i) + vec(k), vec(b) = v...

Let `vec(a)= 2vec(i) + vec(k), vec(b) = vec(i) + vec(j) + vec(k) and vec( c)= 4vec(i) -3vec(j) + 7vec(k)`. Determine a vector `vec(r )` satisfying `vec( r) xx vec(b)= vec( c) xx vec(b) and vec(r ).vec(a)= 0`.

Text Solution

Verified by Experts

The correct Answer is:
`-7 vec(j) + 3vec(k)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-I|22 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-II|47 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-3.1 ( Short Answer Questions)|23 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

If vec(a)= 2vec(i) -vec(j) + 3vec(k), vec(b)= p vec(i) + vec(j) + q vec(k) and vec(b) xx vec(a) = vec(0) , then

If vec(a)= -vec(i) + vec(j) + vec(k), vec(b)= vec(i)-vec(j) + vec(k), vec(c )= vec(i) + vec(j)-vec(k) , then the vectors vec(a) xx vec(b), vec(b) xx vec(c ), vec(c ) xx vec(a) are

vec(a)= 2vec(i) + vec(j) -vec(k), vec(b)= -vec(i) + 2vec(j)- 4vec(k) and vec(c )= vec(i) + vec(j) + vec(k) , then find (vec(a) xx vec(b)).(vec(b) xx vec(c )) .

If vec(a)= 2vec(i) + 3vec(j)- 5vec(k), vec(b)= m vec(i) + n vec(j) + 12 vec(k) and vec(a) xx vec(b) = vec(0) then (m, n)=

If vec(a) = vec(i) + 2vec(j) - 3vec(k), vec(b)= 2vec(i) + vec(j) - vec(k) and vec(u) is a vector satisfying vec(a) xx vec(u) = vec(a) xx vec(b) and vec(a).vec(u)= 0 , then 2|vec(u)|^(2) =

If vec(a)= vec(i) + vec(j) + vec(k), vec(b)= -vec(i) + 2vec(j) + vec(k), vec(c )= vec(i) + 2vec(j) -vec(k) then a unit vector perpendicular to vec(a) + vec(b) and vec(b) + vec(c ) is

If vec(a)= 2vec(i)-vec(j) +vec(k), vec(b)= 3vec(i) + 4vec(j) -vec(k) , then |vec(a) xx vec(b)|=

(2 vec(i) + 4vec(j) + 2vec(k)) xx (2vec(i) -p vec(j) + 5vec(k))=16 vec(i) -6vec(j) + 2p vec(k) then p=

If vec(a)= 4vec(i) + 5vec(j)- vec(k), vec(b)= vec(i)- 4vec(j) + 5vec(k) and vec(c )= 3vec(i) + vec(j)- vec(k) , the find vector vec(alpha) which is perpendicular to both vec(a), vec(b) and vec(alpha).vec(c )= 21

If vec(a) = 2vec(i) + 3vec(j) + 4vec(k), vec(b)= vec(i) + vec(j)- vec(k), vec(c )= vec(i) - vec(j) + vec(k) then verify that vec(a) xx (vec(b) xx vec(c )) is perpendicular to vec(a)