Home
Class 11
MATHS
If vec(a)= (1)/(7) (2vec(i) + 3vec(j) -6...

If `vec(a)= (1)/(7) (2vec(i) + 3vec(j) -6vec(k)), vec(b)= (1)/(7) (3vec(i) - 6vec(j) + 2vec(k)) and vec(c )= (1)/(7) (6vec(i) + 2vec(j)- 3vec(k))` are such that `vec(a) xx vec(b)= lamda vec(c )` then find `lamda`.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-I|22 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-II|47 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-3.1 ( Short Answer Questions)|23 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

If vec(a)= 2vec(i) -vec(j) + 3vec(k), vec(b)= p vec(i) + vec(j) + q vec(k) and vec(b) xx vec(a) = vec(0) , then

If vec(a)= 2vec(i) + 3vec(j)- 5vec(k), vec(b)= m vec(i) + n vec(j) + 12 vec(k) and vec(a) xx vec(b) = vec(0) then (m, n)=

If vec(a) = 2vec(i) + 3vec(j) + 4vec(k), vec(b)= vec(i) + vec(j)- vec(k), vec(c )= vec(i) - vec(j) + vec(k) then verify that vec(a) xx (vec(b) xx vec(c )) is perpendicular to vec(a)

vec(a)= 2vec(i) + vec(j) -vec(k), vec(b)= -vec(i) + 2vec(j)- 4vec(k) and vec(c )= vec(i) + vec(j) + vec(k) , then find (vec(a) xx vec(b)).(vec(b) xx vec(c )) .

Given vec(a) = vec(i) + vec(j)-vec(k), vec(b)= - vec(i) + 2vec(j) + vec(k) and vec(c )= -vec(i) + 2vec(j) -vec(k) . A unit vector perpendicular to both vec(a) + vec(b) and vec(b) + vec(c ) is

If vec(a)= 3 vec(i)- vec(j)-2vec(k), vec(b)= 2vec(i) + 3vec(j) + vec(k) , then (vec(a) + 2vec(b)) xx (2vec(a) - vec(b)) =

If vec(a)= 2vec(i)-vec(j) +vec(k), vec(b)= 3vec(i) + 4vec(j) -vec(k) , then |vec(a) xx vec(b)|=

If vec(a)= vec(i) + vec(j) + vec(k), vec(b)= -vec(i) + 2vec(j) + vec(k), vec(c )= vec(i) + 2vec(j) -vec(k) then a unit vector perpendicular to vec(a) + vec(b) and vec(b) + vec(c ) is

If vec(a)= 2vec(i)-3 vec(j) + vec(k). vec(b)= vec(i) + 4vec(j)- 2vec(k) , then find (vec(a) + vec(b)) xx (vec(a) - vec(b)) .

If vec(a)= vec(i) + vec(j)+ vec(k), vec(c )= vec(j)- vec(k) , then find vector vec(b) such that vec(a) xx vec(b)= vec(c ) and vec(a).vec(b)= 3