Home
Class 11
MATHS
Let vec(OA)= vec(a), vec(OB)= 10vec(a) +...

Let `vec(OA)= vec(a), vec(OB)= 10vec(a) + 2vec(b), vec(OC )= vec(b)` where O, A, C are non-collinear points. Let `lamda` denote the area of the quadrilateral OABC and let `mu` denote the area of parallelogram with `vec(OA) and vec(OC)` as ajacent sides show that `lamda= 6mu`

Promotional Banner

Topper's Solved these Questions

  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-I|22 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-II|47 Videos
  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-3.1 ( Short Answer Questions)|23 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

vec(OA)= vec(a), vec(OB)= 10vec(a) + 2vec(b), vec(OC)= vec(b) where O, A, C are non-collinear points. Let 'p' denote area of quadrilateral OABC, 'q' denote area of parallelogram with OA, OC as adjacent sides, then (p)/(q) =

Let vec(C ) = vec(A) + vec(B) ,

If vec(C) = vec(A) + vec(B) then

If vec(a) xx vec(b)= vec(c ) xx vec(d), vec(a) xx vec(c )= vec(b) xx vec(d) , then

If vec(a) xx vec(b) = vec(b) xx vec(c )= vec(c )xx vec(a) , where vec(a), vec(b), vec(c ) are non zero vectors, then

If vec(u)= vec(a)- vec(b), vec(v)= vec(a) + vec(b) and |vec(a)| =|vec(b)|=2 , then |vec(u) xx vec(v)| =

Let |vec(a) + vec(b)| = |vec(a)-vec(b)| . If |vec(a) xx vec(b)|= lamda |vec(a)| , then lamda =

If |vec(a) xx vec(b)|=6, |vec(a)|=6, (vec(a), vec(b))= (pi)/(3) , then |vec(b)| =