Home
Class 11
MATHS
(vec(a) + vec(b)) xx (vec(a)-vec(b)) + (...

`(vec(a) + vec(b)) xx (vec(a)-vec(b)) + (vec(b) + vec(c )) xx (vec(b)-vec(c )) + (vec(c )+ vec(a)) xx (vec(c ) -vec(a))`=

A

`2(vec(a) xx vec(b) +vec(b) xx vec(c ) + vec(c ) xx vec(a))`

B

`-2 (vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a))`

C

`(vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a))`

D

`-(vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a))`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR (CROSS) PRODUCT OF TWO VECTORS

    AAKASH SERIES|Exercise Exercise-II|47 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

If vec(a)= 2vec(i)-3 vec(j) + vec(k). vec(b)= vec(i) + 4vec(j)- 2vec(k) , then find (vec(a) + vec(b)) xx (vec(a) - vec(b)) .

If vec(a) xx vec(b)= vec(c ) xx vec(d), vec(a) xx vec(c )= vec(b) xx vec(d) , then

Knowledge Check

  • (vec(a) xx vec(b), vec(b) xx vec(a)) =

    A
    `180^(@)`
    B
    `90^(@)`
    C
    `120^(@)`
    D
    `60^(@)`
  • (vec(a) - vec(b)) xx (vec(a) + vec(b)) is equal to

    A
    0
    B
    `vec(a) xx vec(b)`
    C
    `2(vec(a) xx vec(b))`
    D
    `|a|^(2) + |b|^(2)`
  • Observe the following list {:("List-I","List-II"),(A. [vec(a)vec(b)vec(c )],1. |vec(a)||vec(b)| cos (vec(a).vec(b))),(B.(vec(c ) xx vec(a)) xx vec(b), 2. (vec(a). vec(c )) vec(b) - (vec(a). vec(b)) vec(c)),(C. vec(a) xx (vec(b) xx vec(c )),3.vec(a).vec(b) xx vec(c )),(D. vec(a). vec(b), 4.|vec(a)| |vec(b)|),(,5.(vec(b) - vec(c )) vec(a) - (vec(a) . vec(b)) vec(c)):} Then the correct match for List-I from list II is

    A
    1,2,3,4
    B
    3,5,2,1
    C
    3,2,5,1
    D
    2,3,4,1
  • Similar Questions

    Explore conceptually related problems

    If vec(r ) xx vec(a) = vec(b) xx vec(a), vec(r ) xx vec(b) = vec(a) xx vec(b), vec(a) ne vec(0), vec(b) ne vec(0), vec(a) ne lamda vec(b) and vec(a) is not perpendicular to vec(b) , then vec(r ) =

    If vec(a)= 3 vec(i)- vec(j)-2vec(k), vec(b)= 2vec(i) + 3vec(j) + vec(k) , then (vec(a) + 2vec(b)) xx (2vec(a) - vec(b)) =

    Let vec(a) + m vec(b) + n vec(c )= vec(0).vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a)= vec(0) for

    If vec(a) + 2vec(b) + 4 vec(c )= vec(0) , then vec(a) xx vec(b) + vec(b) xx vec(c )+ vec(c )xx vec(a)=

    Let vec(a)= vec(i) + vec(j), vec(b)= 2vec(j)-vec(k) . If vec(r ) xx vec(a) = vec(b) xx vec(a), vec(r ) xx vec(b) = vec(a) xx vec(b) , then (vec(r ))/(|vec(r )|) =