Home
Class 11
MATHS
If sec alpha and "cosec" alpha are the ...

If `sec alpha and "cosec" alpha ` are the roots of `x^(2)-px+q=0` then

A

`p^(2)=q(q-2)`

B

`p^(2)=q(q+2)`

C

`p^(2)+q^(2)=2q`

D

`p^(2)+q^(2)=1`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • REVISION EXERCISE

    AAKASH SERIES|Exercise COMPOUND ANGLES|12 Videos
  • REVISION EXERCISE

    AAKASH SERIES|Exercise MULTIPLE & SUB MULTIPLE ANGLES|20 Videos
  • REAL FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE-1|34 Videos
  • STRAIGHT LINES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II (ADVANCED) PRACTICE SHEET (ADDVANCED)) (Comprehension Type Questions)|6 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^2-px+q=0 then alpha^3+beta^3=….

If alpha, beta , gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(2) + beta^(2) + gamma^(2) =

Knowledge Check

  • If tan alpha, tan beta are the roots of the equation x^(2)+px+q=0 then sin^(2) (alpha+ beta)+ p sin(alpha+ beta) (cos+beta) +q cos^(2)(alpha+ beta)=

    A
    0
    B
    1
    C
    p
    D
    q
  • "If" alpha , beta "are the roots of" x^(2) - px + q = 0 "then" alpha^(3) + beta^(3) =

    A
    `p + q^(3)`
    B
    `p - 3p^(3) q`
    C
    `p^(3) - 3pq`
    D
    `p^(2) - 3 pq`
  • If alpha, beta, gamma are the roots of x^(3) - px + q = 0 then alpha^(6) + beta^(6) + gamma^(6) =

    A
    `-2p^(3) - 3p^(3)`
    B
    `-2p^(3) + 3p^(3)`
    C
    `2p^(3) - 3p^(3)`
    D
    `2p^(3) + 3p^(2)`
  • Similar Questions

    Explore conceptually related problems

    If alpha, and beta are the roots of x^(2)+px+q=0 form a quadratic equation whose roots are (alpha-beta)^(2) and (alpha+beta)^(2) .

    If alpha, beta , gamma are the roots of x^(3) + 3px + q = 0 then the equation whose roots are (alpha + 1)/( beta + gamma - alpha), (beta + 1)/(gamma + alpha - beta) and (gamma + 1)/(alpha + beta - gamma) is

    If w, w^(2) are the roots of x^(2)+x+1=0 and alpha, beta are the roots of x^(2)+px+q=0 then (w alpha+w^(2)beta)(w^(2)alpha+w beta) =

    If alpha, beta, gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(3) + beta^(3) + gamma^(3) =

    If alpha, beta, gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(4) + beta^(4) + gamma^(4) =