Home
Class 11
MATHS
If A, B are acute positive angles satisf...

If A, B are acute positive angles satisfying the equations `3sin^(2)A+2sin^(2)B=1` and `3sin2A-2sin2B=0`, then find `A+2B`.

A

`pi`

B

`(2pi)/3`

C

`(pi)/6`

D

`(pi)/2`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    AAKASH SERIES|Exercise Exercise -I|23 Videos
  • TRIGONOMETRIC EQUATIONS

    AAKASH SERIES|Exercise Exercise-II|68 Videos
  • TRIGONOMETRIC EQUATIONS

    AAKASH SERIES|Exercise Exercise - 6.1 Short Answer Questions|47 Videos
  • TRIGONOMERTIC RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|77 Videos
  • TRIGONOMETRIC RATIOS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL - II) (PRACTICE SHEET (ADVANCED) SIGNLE ANSWER TYPE QUESTIONS)|23 Videos

Similar Questions

Explore conceptually related problems

If A and B are acute positive angles satisfying the equations 3sin^(2)A+2sin^(2)B=1 and 3sin2A-2sin 2B=0 , then A+2B is equal to

Let 0 lt A, B lt (pi)/(2) satisfying the equation 3 sin ^(2) A + 2 sin ^(2) B =1 and 3 sin 2A - 2 sin B =0 then A +2B =

If A and B are acute angles satisfying SinA = Sin^(2) B and 2Cos^(2) A= 3Cos^(2) B then A + B =

If A and B are acute angles satisfying 3 cos^2 A + 2 cos^2 B = 4 " and " (3 sin A)/(sin B) = (2cos B)/(Cos A) , then A + 2B =

If A and B are acute angles such that sinA = sin^(2) B,cos^(2) A = 3 cos^(2) B then

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C

sum(sin (A+B) sin (A-B))/(sin^(2)A sin^(2)B)=

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C