Home
Class 11
MATHS
If sin A=1//sqrt(10), sin B= 1//sqrt(5) ...

If `sin A=1//sqrt(10), sin B= 1//sqrt(5) ` where A and B are positive and acute , then A +B=

Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    AAKASH SERIES|Exercise ADDITIONAL EXAMPLES|1 Videos
  • COMPOUND ANGLES

    AAKASH SERIES|Exercise SPECIAL RESULTS|2 Videos
  • CHANGE OF AXES

    AAKASH SERIES|Exercise Practice Exercise|29 Videos
  • CONTINUITY

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|34 Videos

Similar Questions

Explore conceptually related problems

If sin =(1)/(sqrt10), sin beta =(1)/(sqrt5) and alpha , beta are acute, show that alpha + beta = pi//4

If int(dx)/((1+sqrt(x))sqrt(x-x^(2)))=(Asqrt(x))/(sqrt(1-x))+(B)/(sqrt(1-x))+C , where C is a real constant then A+B=

If 90^(@) lt A lt 180^(@) , 180^(@) lt B lt 270^(@) and cos A=-(sqrt(3))/(2) , sin B=-(3)/(5) "then" ( 2 tan B + sqrt(3) tan A)/( cot^(2) A + cos B) =

If sin (A-B) =(1)/(2) ,cos (A+B) =(1)/(2) , where 0^@ lt A +B lt 90 ^(@) and A gt B find A and B

sin ^(-1) (sqrt(3))/(2) + sin ^(-1) sqrt(2/3)=