Home
Class 11
MATHS
Locus of point of intersection of the li...

Locus of point of intersection of the lines `x sin theta-y cos theta=0` and `ax sec theta-by "cosec"theta=a^(2)-b^(2)` is

A

`x^(2)+y^(2)=a^(2)`

B

`x^(2)+y^(2)=b^(2)`

C

`x^(2)+y^(2)=a^(2)+b^(2)`

D

`x^(2)+y^(2)=(a+b)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the point of intersection of the lines x sin theta+(1-cos theta)y=a sin theta and x sin theta -(1+cos theta )y+a sin theta =0 is

Show that the locus of the point of inter section of the lines x cos theta +y sin theta =a, x sin theta -y cos theta = b, theta is a parameter is a circle.

Show that cot theta +tan theta =sec theta cosec theta

If sin theta + cos theta = m and sec theta + " cosec " theta = n then

sec^2 theta + cosec^2 theta =…………

If x cos theta + y sin theta = a , x sin theta - y cos theta = b then

( sin theta + " cosec " theta )^(2) + ( cos theta + sec theta )^(2)=

If sin theta + cosec theta =2 then sin^(n) theta + cosec^(n) theta =

If cot theta + tan theta = x and sec theta - cos theta = y then