Home
Class 11
MATHS
The locus of the point of intersection o...

The locus of the point of intersection of the lines `x sin theta+(1-cos theta)y=a sin theta and x sin theta -(1+cos theta )y+a sin theta =0` is

A

`x^(2)+y^(2)=a^(2)`

B

`x^(2)-y^(2)=a^(2)`

C

`x^(2)+y^(2)=2a^(2)`

D

`x^(2)+y^(2)=3a^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the locus of the point of inter section of the lines x cos theta +y sin theta =a, x sin theta -y cos theta = b, theta is a parameter is a circle.

If x cos theta + y sin theta = a , x sin theta - y cos theta = b then

Locus of point of intersection of the lines x sin theta-y cos theta=0 and ax sec theta-by "cosec"theta=a^(2)-b^(2) is

( sin 3 theta )/( sin theta ) -(cos 3 theta )/( cos theta )=

(cos theta + sin theta )/( cos theta - sin theta )-(cos theta - sin theta )/( cos theta + sin theta ) =

If sin theta + cos theta = a " then " sin^(4) theta + cos^(4) theta =

( cos 3 theta - sin 3 theta )/( cos theta+ sin theta ) =

If cos theta - sin theta = sqrt(2) sin theta " then " cos theta + sin theta =