Home
Class 11
MATHS
Find the condition that the equation ax^...

Find the condition that the equation `ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c = 0` to take the form `aX^(2) + 2hXY + bY^(2) = 0` when the axes are translated.

A

`(2|c|)/(sqrt(h^(2)-ab))`

B

`(|c|)/(sqrt(h^(2)-ab))`

C

`(3|c|)/(sqrt(h^(2)-ab))`

D

`(4|c|)/(sqrt(h^(2)-ab))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The condition that the equation ax^(2) + 2hxy + by^(2) + 2gx + 2fy +c=0 can take the form ax^(2) - 2hxy + by^(2)=0 , when shifting the origi is

If ax ^(2) + 2kxy + by ^(2) + 2gx + 2fy + c =0 then (dy)/(dx) =

If ax ^(2) + 2 hxy + by ^(2) =0 then (dy )/(dx) =

The transformed equation of ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c=0 when the axes are rotated through an angle 90^(@) is

If the straight lines given by ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c = 0 intersects on x -axis then show that 2fgh-af^(2)-ch^(2)=0

If ax ^(2) + 2hxy + by ^(2) =1 then (hx + by) ^(3) y _(2) =

If the pair of line ax^2+2hxy+by^2+2gx+2fy+c=0 intersect on the y-axis, then

If the pair of lines ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 intersect on the y-axis, then 2fgh=