Home
Class 11
MATHS
Observe the following lists : {:(,ul"L...

Observe the following lists :
`{:(,ul"List-I",ul"List-II"),(,"(Plane)","(sum of the lengths of the intercepts on axes)"),("A)",3x+4y-5z=0,"1) "-77//30),("B)",2x-3y+5z+7=0,"2) 13"),("C)",2x+3y+4z-12=0,"3) 0"),(,,"4) 217/30"):}`
Match List-I to List-II :

A

`{:(ul"A",ul"B",ul"C"),(3,1,2):}`

B

`{:(ul"A",ul"B",ul"C"),(2,1,3):}`

C

`{:(ul"A",ul"B",ul"C"),(2,3,1):}`

D

`{:(ul"A",ul"B",ul"C"),(3,2,1):}`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S = (1)/( 1.4) + (1)/( 4.7) + (1)/(7.10) + .....n terms, Observe the following lists. {:("List-I","List-II"),("A)" underset(n to prop) (Lt) S=, "1)"0 ),("B)" underset(n to 0 ) (Lt) S=,"2)" 3//10),("C)" underset(n to 3) (Lt) S=,"3)"1//3),("D)" underset(n to 4) (Lt) S=,"4)"1),(,"5)"4//13):}

Observe the following lists : {:(,ul"List-I"" (Equation of a plane)",,"List-II"),("A)","through (0,0,0) and (1,1,1)","1)",2x+3y-4z=5),("B)","perpendicular to the plane x + 6y + 5z = 0","2)",3x-2y+4z=7),("C)","parallel to the plane 3x - 2y + 4z = 5","3)",4x+4y-5z=0),(,,"4)",x-4y+3z=0):} Match List-I to List-II :

The intercepts of the plane 2x – 3y + 5z – 30 = 0 are

Match the planes given in List I with their perpendicular coordinate plane given in List II. {:(,ul"List - I",ul"List - II"),("A)",2x+3y+4=0,"I) YZ"),("B)",2y+3z+4=0,"II) ZX"),("C)",2z+3x+4=0,"III) XY"):} The correct match form list I to list II is

For 0lexle2pi , Match the equations in List I to no. of solutions in List II {:(ul"List I",ul"List II"),(ul"(Trigonometric equation)",ul"(no. of solution)"),("I) "Tan^(2)x+Cot^(2)x=2,"a) 2"),("II) "Sin^(2)x-Cosx=1//4,"b) 0"),("III) "4Sin^(2)x+6Cos^(2)x=10,"c) 1"),("IV) "Sinx = 1,"d) 4"),(,):}

To remove the first degree terms in the following equations origin should be shifted to the another point then calculate the new origins from list - II {:(" List - I "," List - II "),("(A) "x^(2)-y^(2)+2x+4y=0,"(1) (5,-7) "),("(B) "4x^(2) +9y^(2)-8x+36y + 4 = 0,"(2) (1,-2) "),("(C) "x^(2) + 3y^(2) + 2x + 12y + 1 = 0,"(3) (-1,2) "),("(D) "2(x-5)^(2)+3(y+7)^(2)=10,"(4) (-1,-2) "),(,"(5) (-5,7) "):} The correct matching is

The d.r's of the line of intersection of the panes x + y + z -1 =0 and 2x + 3y + 4z + 7=0 are

Observe the following lists and matching from List - I to List - II is {:("List-I","List-II"),((A)[(0,1),(1,0)],"(1) skew symmetric matrix"),((B)[(2,-5),(-5,2)],"(2) Symmetric matrix"),((S)[(0,x),(-x,0)],"(3) Hermitian matrix "),((D)[(1,2+3i),(2-3i,5)],"(4) Involutory matrix"),(,"(5) Idempotent matrix"):}

Obser the following lists {:("List -I","List -II"),((A)"Maximum value of xy subject to x+y =7 is",(1)2),((B)"If"l^(2)+m^(2)=1",""then the maximum value of 1+m is",(2)1),((C)"If"x+y=12",""then the minimum Value of"x^(2)+y^(2)"is",(3)sqrt(2)),((D)"Minimum value" x^(2)-8x+17 "is",(4)49//4),(,(5)0):}