Home
Class 11
MATHS
lim(x to 0)(xe^(x)-log(1+x))/(x^(2))=...

`lim_(x to 0)(xe^(x)-log(1+x))/(x^(2))=`

A

`(3)/(2)`

B

`(2)/(3)`

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(x to 0) (e^(sin^(2)x)-1)/(x^(2))

lim_(x to 0) {(log_(e)(1+x))/(x^(2))+(x-1)/(x)}=

Lt_(xto0)(2x-log(1+2x))/x^(2)

lim_(x-gt0) (e^(3x)-1)/(log(1+5x))

underset(x to 0)"Lt" (x cos -log(1+x))/(x^(2))=

Evaluate the following limits: Show that lim_(x to 0)((1)/(x^(2))-(1)/(sin^(2)x))=(-1)/(3)

Evaluate lim_(x to 0)(e^(7x)-1)/(x)

Show that Lt_(x to 0)(log(1+x))/(x^(2))=1