Home
Class 11
MATHS
f(x) is a contiuous function satisfying ...

f(x) is a contiuous function satisfying `f(x)*f((1)/(x))=f(x)+f((1)/(x)) and f(1) gt 0`, then `underset(x to 1) (Lt)f(x)` is equal to

A

2

B

1

C

3

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) is a polynomial function satisfying f(x).f((1)/(x))=f(x)+f((1)/(x)) and f(4) =257 then f(3) =

If f(x) is a polynomial function such that f(x)f((1)/(x))=f(x)+f((1)/(x))and f(3) =-80 then f(x)=

If f(x).f((1)/(x))=f(x)+f((1)/(x)) , and f(3)=82, then int(f(x))/(x^(2)+1)dx=

If f(x) is a polynomial satisfying f(x)f(1//x)=f(x)+f(1//x) and f(3)=28 , then f(4) is equal to

If f(x) is a polynomial function x>0 such that f(x)f(1//x)=f(x)+f(1//x) and f(2)=33 then f(x)=

If f(x) is a polynomial fin x( gt0 ) satisfying the equation f(x)+f(1//x)=f(x).f(1//x) and f(2)=9 , then f(3)=

If f(x)=x Tan^(-1) x" then "underset(x to 1)"Lt" (f(x-f(1))/(x-1)=

If a function f statisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2)) (x ne 0) then domain of f(x) is