Home
Class 11
MATHS
For a gt 0, t in (0, (pi)/(2)). Let x= s...

For `a gt 0, t in (0, (pi)/(2))`. Let `x= sqrt(a^(sin^(-1)t)) and y= sqrt(a^(cos^(-1)t)),` then `1+((dy)/(dx))^(2)` equals.

A

`(x^(2))/(y^(2))`

B

`(y^(2))/(x^(2))`

C

`(x^(2)+y^(2))/(y^(2))`

D

`(x^(2)+y^(2))/(x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x) .

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=

If x in ( 0 , (pi)/(2)) " then " int sqrt(1 + sin x ) dx =

If y =sqrt((1-sin2x)/(1+sin2x)) then ((dy)/(dx))_(x = 0) =

If x = sin^(-1)t and y = log (1 - t^2) , then (d^2 y)/(dx^2)|_(t=1//2) is

If x^(2)+y^(2)=t+(1)/(t) "and" x^(4)+y^(4)=t^(2)+(1)/(t^2), "then" (dy)/(dx) is equal to

If x^(2) + y^(2) = t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) , then (dy)/(dx) =

If a. ne 0 , x = a (t + sin t) and y = a (1- cos t) then (d^(2) y) /dx^(2)" at "t = (2pi)/ 3 is

If x^(2) + y^(2) = t + (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) then (dy)/(dx) =